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SUMMARY
This paper presents a novel approach for updating the reservoir model from well test data. A sequential
Bayesian optimization technique, i.e. Gaussian Process, is coupled with the Differential Evolution (DE)
algorithm, for guided sampling from the parameter space. The Gaussian process assumes the simulation
outputs are normally distributed, and aims at modelling the current model and misfit data to predict the
best next sampling locations. The next samples are chosen by maximizing the expected improvement
gained by sampling from a new location. Differential evolution is used in the maximization process of the
expected improvement. This procedure is successfully tested in matching a noisy well test data from a
multi-layered faulted reservoir model. The samples from multiple well-test simulations are pooled
together, and the Markov chain Monte Carlo (McMC) techniques are used to estimate the posterior
distributions over the parameter space. The computational cost of McMC process is reduced by
implementing a bootstrap Multivariate Adaptive Regression Spline.



                                                                                                                                

                                                                                                                                                                                                                

76th EAGE Conference & Exhibition 2014 

Amsterdam RAI, The Netherlands, 16-19 June 2014 

Introduction 

Standard well test interpretation techniques entail matching simplified analytical models (from rather 

complex mathematical solutions) to the pressure transients caused by the rate changes. Although, the 

analytical models are very useful in many reservoir engineering applications, the inability of the 

models to fully describe the nonlinearities and reservoir heterogeneities can limit the usefulness of 

well test data in the process of reservoir characterization.  

Geological well testing (Hamdi et al., 2013b) from the detailed 3D static models can largely improve 

the application of well test data for practical purposes. In particular, the geological well testing will 

provide a framework to assist in updating the static reservoir models from the information of 

simulated and observed well test data. Therefore, the scope of well-testing has been enhanced from 

mainly parameter estimation techniques using analytical models to more sophisticated disciplines for 

reservoir description and updating (Du and Stewart, 1992). The updating process of the static model 

from numerical transient test simulations involves three distinct steps; parameterization, forward 

simulation and inversion. The inversion process involves minimization of an objective function, 

which in our case is the residual sum of squares of drawdown derivatives in the logarithmic domain.  

For such cases, we are not promoted to use the gradient based methods (Gilman and Ozgen, 2013) for 

optimization as they heavily depend on the starting point and cannot guarantee to find the global 

minima in high dimensional problems (Hamdi et al., 2013a). In this work, we implement the 

differential evolution algorithm coupled with a Bayesian Optimization (BO) technique (Lizotte, 

2008), i.e. Gaussian Process (GP). The GP (Jones, 2001) algorithm has proven to be efficient in a 

wide range of engineering optimization problems using a limited number of simulations (Azimi et al., 

2010).  

We present a realistic well test response of a multi-layered faulted reservoir. We use the Gaussian 

Process to model the well test misfit in each iteration, and use the Maximum Expected Improvement 

(Jones, 2001) as a selection criterion for designing the best parameters for the next simulation run. 

The generated samples (simulation models) during the optimization process are then used within a 

Bayesian framework to address the uncertainty and predict the posterior distribution over the 

parameter space using Markov chain Monte Carlo (McMC). To reduce the computational cost during 

McMC process, we use the Multi-Adaptive Regression Spline (MARS) with bootstrapping (Friedman, 

1991) to add more samples at the boundaries of parameters. The statistical analysis and McMC runs 

are performed using PSUADE package (Tong, 2013). 

Gaussian Process (GP)  

A Gaussian Process (GP) is probabilistic function, which can model the unknown function at a new 

location xi by assuming a output as a Gaussian random variable y(xi) with a mean µ=k(xi, xo)k(xo,xo)
-

1
yo  and a variance σ2 = k(xi, xi)- k(xi, xo) k(xo, xo)

-1 k(xo, xi), where (xo, yo) is a set of observed input 

and output data, and k(.) is an arbitrary kernel (Azimi et al., 2012). If we assume a Gaussian kernel, 

i.e. k(xj, xi)=exp( ||xi-xj||/λ),  to describe the observed data relationships, the optimal values of mean ( 

) and variance ( 2 ) are obtained from maximization of exponential likelihood function (λ is the 

characteristic length scale). When the optimal mean and variance are known, the value of function at a 

new sample location (xi) is estimated by maximizing the likelihood function, after adding this new 

point to the previous observed data. It can be readily shown that (Jones, 2001) for such conditions the 

optimum function value, ( )iy x , which can maximize the likelihood function, is the simple kriging 

predictor with a variance of SD
2(xi).  

Maximum expected Improvement (MEI)  
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The expected improvement, E(I), measures the improvement we can expect by sampling from a new 

location. If y(xi)=ymax-I, where I is the improvement and ymax the current best value of function, then 

the expected improvement is defined as follows (Jones, 2001)  
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  , P(u) and ρ(u) the Gaussian cumulative distribution and density functions, 

respectively. The maximum expected improvement seeks to maximize the improvement we get if we 

sample from a new location xi. For this purpose, we use the differential evolution (DE) algorithm 

(Storn and Price, 1995) which serves as an efficient population-based global optimization technique 

(Hajizadeh et al., 2010). DE starts with an initial random population of the parameter space and 

evaluates the corresponding function values for each member in this population. In the DE/random 

variant of this algorithm, the population members are randomly selected and mixed together to 

generate the next set of solutions. Hamdi et al. (2014) presented the application of DE to the 

geological well testing with promising results.   

After this step, we run the reservoir simulation to evaluate the well test derivative misfit value for the 

selected location (i.e. model parameters) by MEI and DE. Then we iterate through the next locations 

until we touch the minimum misfit threshold, or have reached the maximum number of simulation 

runs assigned to the algorithm. The overall convergence rate of the GP is measured by the simple 

regret value that is defined as yopt-ymax, where yopt is the optimal value of function and ymax is the 

current best value of the evaluated function. 

It should be noted that the accuracy of the algorithm depends on the ability of the GP to adequately 

represent the simulation evaluations (misfit values). Therefore, it is necessary to generate an initial 

population of models to act as the kick-off observed data (xo, yo) and the next samples are then 

sequentially added to this initial set accordingly.  

Case study 

We attempt to match a realistic well test response of a complex reservoir using the GP, MEI and DE. 

The model includes 40×45×28 coarse cells in x-, y- and z- directions respectively. Each cell covers an 

average area of 60×60 ft2 and the reservoir thickness is around 140 ft. Fig.1 shows the structural 

framework of the reservoir model. A fully penetrated vertical well is located close to the center of the 

model near two cross-cutting normal faults (around 200ft from each fault). The wells produce single 

phase oil at the rate of 980 STBO/D for almost 14 days of drawdown. A single-phase black oil 

reservoir simulator (e.g. CMG) was used to simulate the drawdown well test responses. Logarithmic 

time stepping along with an extensive Cartesian local grid refinement (C-LGR) around the wellbore 

are employed to capture the early time well test phenomena and reduce the associated numerical 

artifacts on the well test results (Hamdi et al., 2013a).  

 

Table 1 shows the 8-dimensional parameter space (including KH for each layer, KV/KH, and fault 

transmissibilities), truth model, and the prior ranges of the reservoir parameters, which are used in the 

geological well test matching process. The results of three GP runs are shown in Fig.2, where each 

run includes 250 simulation evaluations. The figure shows that a reasonable match was obtained in 

less than 100 simulations (for the GP-Run 1 a match after 25 simulations was achieved). The 

convergence behavior is also favorable in these cases. For this exercise, the GP model is set up with a 

random initial population of 5, λ=15.11 (summation of the parameter range lengths which was found 

to be a good approximation). For the MEI optimization, the DE/Random was set up with an initial 

population and of 400 and 500 iterations. The best model corresponding to the best simulation in GP-

Run 1 with the lowest misfit is shown in Fig. 3. An excellent match to the noisy realistic drawdown 

derivative is obtained. 



                                                                                                                                

                                                                                                                                                                                                                

76th EAGE Conference & Exhibition 2014 

Amsterdam RAI, The Netherlands, 16-19 June 2014 

 
The  simulation populations of these four independent GP runs were pooled together for uncertainty 

analysis. A cross-validated MARS model with 160 basis function and an interaction level of 7 were 

used to represent the simulation runs. We assumed all parameters are normally distributed over the 

parameter ranges. This was then used in a Bayesian framework to predict the posteriores over the 

parameter space. Fig.4 shows the priors and the corresponding posterior probability distributions of 

the model parameters. We applied the McMC and Gibbs sampler with one million Monte Carlo 

samples from the calibrated MARS model. Whenever the posterior doesn’t change (e.g. for X6 and 

X7), no or little information was imposed by the well test data to constrain the model according to the 

collected samples.  

 

 
 

 

 

 

  
 

 

Conclusion 

We studied the geological well testing of a faulted multi-layered reservoir model with 8 unknown 

parameters. A sequential Bayesian Optimization technique (i.e. GP with MEI) coupled with the 

differential evolution algorithm was successfully implemented in a reservoir engineering problem. 

The results are promising; with a low number of simulations to achieve a well test derivative match. 

The results were used in an McMC process, and the posteriors were deducted. For some parameters, 

the posterior did not change, which was indicative of insensitivity with respect to those parameters. 

However, the posterior was updated for the other parameters, which clearly indicates the value of well 

testing in updating the reservoir models.  

 

Fault 2
Fault 1

Parameters Ranges Truth case Best case 

X1: log(KH) (Layer 1) 0.0 to 3.0 2 1.1 
X2: log(KH) (Layer 2) 2.7 to 4.0  3.54  3.53 
X3: log(KH) (Layer 3) -1.3 to1.7 0.0 -0.42 
X4: log(KH) (Layer 4) -1 to 2.3 1.0  1.86 
X5: log(KH) (Layer 5) 1.0 to 3.03 2.7 2.76 
X6: KV/KH 0.0 to 1.0  1 0.22 
X7: Fault Trans. 1 0.0 to1.0 1.0 0.47 
X8: Fault Trans. 2 0.0 to1.0 1.0  0.87 
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Table 1. The truth model, parameter ranges and the 

best model parameters which optioned from GP-Run 1. 

 

Fig.1: The multi-layered faulted reservoir 

model used in this study. 

Fig.2: The simple regret for different GP 

runs. Ecah GP includes 250 simulations. 
Fig.3: The well test derivativesf the real case and 

the best case from GP-Run 1. 
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Fig.4: The assigned Gaussian prior distribution (the Gaussian red curves), and the 

corresponding estimated posterior histograms for all parameters which are obtained from 

the Bayesian inference using McMC method. 


