
The edge buffer: A data structure for easy silhouette rendering

John W. Buchanan*

Elec t ron ic Arts (Canada), Inc.

4330 Sanderson Way,

E lec t ron ic Arts Centre

Burnaby, B.C. V 5 G 4X1

juancho @ ea.com

Mar io C. Sousa t

Depar tmen t o f C o m p u t i n g Sc i ence

Univers i ty o f Alber ta

E d m o n t o n , AB

Canada, T 6 G 2H1

mario @ cs. ualberta, ca

Abstract

Cartoon rendering of 3d models relies heavily on accent lines to
portray the important features of a model. In addition to this it
has been shown that highlighting silhouette edges can significantly
enhance the comprehension of technical images. In this paper we
introduce the edge buffer. This data structure allows us to highlight
silhouette edges, boundary, edges, and artist defined edges. This
edge buffer is used a-priori to define which edges are to be rendered
when visible. The edge buffer is also updated each time the object
is rendered so that silhouette edges can be drawn. We discuss the
difference between silhouette edges and boundary edges and show
how the edge buffer allows both types of edges can be drawn. The
use of the edge buffer only requires that a front/back computation
be available and that the object being rendered be represented in a
vertex/polygon representation

Keywords: NPR, Edge highlighting, silhouette rendering

1 Introduction and previous work

Rendering objects in a cartoon style requires the use of edges to
highlight different areas of the object. Many times the silhouette
edges of the object are also drawn to clearly delineate the object.
The method for detecting silhouette edges is fairly straight forward.
The basic approach is to find edges that are shared between front
facing and back facing polygons. A front facing polygon is defined
as a polygon whose normal points towards the viewer 1.

If the viewing vector (V) is defined as a vector from the eye to
the viewing plane the a front facing polygon is detected by looking
at the sign of the dot product between N(the polygon normal) and
V. If the dot product N • V > 0 then the polygon is front facing, if
N • V < 0 then the polygon is back facing and if N - V = 0 then
the polygon is perpendicular to the viewing direction as illustrated
in Figure 1

• Part of this work was done while the first author was employed as a
research scientist at Radical Entertainment in Vancouver Canada.

tThis research was funded in by NSERC.
lThis assumes the fairly standard definition of a polygon normal

where the normal points away from the polygon thus defining the
outside direction for the polygon.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NPAR 2(i)00 Annecy France
Copyright ACM 2000 1-58113-277-8/00/6...$5.00

lop

Back / ~ Front

Figure 1: The front/back facing property of a polygon can be cal-
culated from the sign of the dot product N • V

If this test is done after the objects and their normals have been
transformed into camera space the test reduces to a sign test of the z
component of the projected normal since the projected view vector
is simply (0, 0, 1).

The test for front/back facing can be done either in model space
or in camera space. In some situations there is no need to project
the object normals into camera space so the test should be done in
object space.

Image space algorithms

The use of silhouette edges has been discussed by several people,
in particular Saito and Takahashi [6] showed how silhouette edges
can be used to enhance the display of images. The silhouette edges
can be rendered by highlighting the discontinuities in the z-buffer
derivative. In a similar fashion creases or folds in the image can
be rendered by highlighting discontinuities in the second derivative
of the z-buffer. Rosignac [5] used the z-buffer to render silhouette
edges by first rendering the object in white then rendering the scene
in thick wire-frame mode. The polygons in the second pass are
pushed away in the z direction. This results in a silhouette display
of the objects. In [4] Raskar and Cohen presented three ways to add
silhouette edges using front/back polygon computation. They used
z-buffer equality, z-buffer offset, and polygon growing. In each of
these methods the front facing polygons are rendered first with z-
buffer write enabled. The back facing polygons are then rendered
using one of three methods to produce the silhouette edges. This is
an extension of the work presented by Rossignac[5].

Object space methods

Markosian et. al. [3] presented a method for quickly approximat-
ing the display of an object by rendering the silhouette of the object.

39

Their work differs from ours in that they do not want to process all
of the polygons and thus focus on approximating the silhouette. In
their paper they presented a probabilistic silhouette rendering tech-
nique that is based on Appel's [1] work on hidden surface removal.
Gooch et. al. [2] presented a cartoon ilhunination model that used
silhouette rendering as one of its parameters. In particular they pre-
sented two methods for highlighting the silhouettes, the first used
a environment map with the circumference of the texture being set
to black. This results in a darkening of the object where the nor-
mals are perpendicular to the viewing direction, thus a silhouette
is added to the object image. The second method that they pre-
sented assumes that all of the polygons are being processed. The
edges of the model are stored as lines on the surface of the Gauss
sphere. Any line that intersects the projection plane corresponds to
a silhouette edge. Their method works well for orthographic pro-
jection but is difficult to generalize to a perspective framework. If
processed correctly the silhouette edges can be found accurately
without touching all of the polygons.

The context in which we wanted to add silhouette edges to ob-
jects was in relatively low-end consumer PC applications 2. On
these machines reading from the z-buffer is relatively expensive or
impossible if there is no z-buffer 3. The second criterium is that
we are always going to process all of the polygons that define the
object. Thus we are not concerned with methods that require pre-
processing to define the silhouette edges. The third criterium was
that artists should be able to define which edges in the model must
be displayed,

2 The edge buffer

In this paper we introduce the edge buffer silhouette technique. Our
technique is based on two assumptions, the first that front/back fac-
ing computations can or are being performed for the polygons. The
second assumption is that the polygonal mesh is being stored using
an indexed vertex mesh representation. Our technique does not re-
quire the submission of the back facing polygons, it handles open
objects, and easily incorporates artist defined edges and other com-
puted edges. The edge buffer requires little additional storage 4 We
introduce the edge buffer in steps. First we show how the idea was
formulated to work for the simple case of closed polyhedral objects,
we then show how the technique easily extends to boundary edges
on open objects, and finally we show how this data structure can
easily be extended to store artist defined edges.

2.1 Closed polyhedral objects

The edge buffer stores a minimum of 2 bits per edge in the model.
The bits correspond to a front facing flag (F) and a back facing flag
(B). In our implementation we have stored these flags in a hash
table. The hash table is accessed using the lowest valued vertex-
index of the edge. The second vertex index is stored as a field in
the edge buffer entry. Thus for the object in Figure 2 the complete
edge buffer has the following entries.

21n grant terms:Highly interactive 3d environments, or in real terms:
Video Games

3The Sony Playstation T M has no hardware z-buffer.
4In our implementation we have used 32 bits per edge. Five bits for the

edge information that we describe, and 24 bits for the index of the second
ver tex .

3

1

\

4

Figure 2: A closed polyhedral object defined by 5 vertices and 6
polygons.

Vertex VFB VFB VFB VFB
1 200 300 400 500
2 300 500 x00 x00
3 400 500 x00 x00
4 500 x00 x00 x00
5 x00 x00 x00 x00

In our implementation we stored this as a static array that is part
of the object definition. Notice that the last row of the edge buffer
is always empty since any edge that contains the last vertex will be
represented earlier in the table. This initialization is performed as a
pre-rendering setup for each frame.

As the polygons are being passed to the rendering engine we
update the edge buffer on a per-polygon basis. The FB flags for the
edges in the current polygon are updated depending on whether the
polygon is front facing or back facing. For a front facing polygon
we XOR a 1 value into the F field and for a back facing polygon
we XOR a 1 into the B field. The polygon defined by the vertices
1,2, and 3 (P[1,2,3]) is a front facing polygon. After P[1,2,3] is
processed the edge buffer has the following values (new values are
in bold font):

Ve~ex VFB VFB VFB VFB
1 210 310 400 500
2 310 500 x00 x00
3 400 500 x00 x00
4 500 x00 x00 x00
5 x00 x00 x00 x00

After polygon P[1,3,4] is processed the edge buffer contains the
following values:

Ve~ex VFB VFB VFB VFB
1 210 300 410 500
2 310 500 x00 x00
3 410 500 x00 x00
4 500 x00 x00 x00
5 x00 x00 x00 x00

Notice that the entry for the edge (1, 3) now has the value 00
even though the edge has been visited twice. The F bit has been set

40

twice with the XOR operation and thus now has the value 0. Now
consider the effect of processing polygon P[3,4,5].

Vertex VFB VFB VFB VFB
1 210 300 410 500
2 310 500 x00 x00
3 411 501 x00 x00
4 501 x00 x00 x00
5 x00 x00 x00 x00

Notice that the entry for the edge (3, 4) now has the value 11
for FB. This indicates that the edge (3, 4) is shared by a front
and a back facing polygon. The remaining polygons are processed
similarly finally producing the following edge buffer table:

Vertex VFB VFB VFB VFB
1 211 300 411 500
2 311 500 xO0 xO0
3 411 500 xO0 xO0
4 500 x00 x00 x00
5 x00 x00 x00 x00

Thus the edges that define the silhouette of this object are
{(1, 2), (2, 3), (3, 4), (1, 4)}. The rendering of the silhouette can
now be done in a second pass using the edges defined by this pro-
cess. Since the vertices for these edges are all part of a front facing
polygon we know that they will be transformed to screen space. In
our implementation we simply call a line drawing routine with the
screen projections of the appropriate vertices.

2.2 Open polyhedral objects and artist edges.
One of the advantages of closed polyhedral objects is that back
facing polygons need not be submitted to the rendering pipeline.
Unfortunately if the object is an open polyhedral object all of its
polygons need to be submitted to the rendering pipeline, this is il-
lustrated in Figure 3. After processing the polygons P[1,2,3,4] and
P[3,7,6,4] the edges (1, 4),(4, 6) will have their front facing flags
set. Similarly after polygons P[1,2,8,5] and P[8,7,6,5] have been
processed the edges (1, 5) and (5, 6) will have their back facing
flags set. After all the polygons in this open box have been pro-
cessed the edges (1, 2), (2, 3), (3, 7), and (6, 7) will have both the
F and B flags set. Following our initial interpretation of the edge
buffer table would result in the rendering of edges with FB = ' 11'.
Clearly, as shown in Figure 4, this is not a correct rendering of the
silhouette of this open box. This problem can be trivially addressed
by rendering all edges whose FB flags are not identical to '00'.
When we do this we have a better rendering of the box (Figure 5).
In particular the edges (1, 4) and (4, 6) would not have been drawn
had this box been a closed object.

There is still a problem with this rendering of the box. A tra-
ditional illustration of the box would completely render the edge
(4, 3) and would partially render the edge (5, 8) (Figure 6). Unfor-
tunately unless we want to use the second derivate of the z-buffer
there is no easy way to automatically detect and highlight these
edges.

Given a model that is to be rendered there may always be an edge
or set of edges in this object that must always be rendered. In order
to address this almost arbitrary set of edges we decided to allow
the artist to control which edges are crucial in the rendering of the
object.

In order to allow an artist to a-priori define which edges we added
an additional bit (A) to the edge buffer field. The combination of
the artist flag with the FB flags allows us to decide which edges to
render. In the case of an open object we simply render any edges

5

i y.O...! 11

o O°°°°'°°°° *'"°" 7

3

Figure 3: A box with the top polygon missing. This results in edges
that will never be defined as silhouette edges. In the context of this
paper we refer to the top edges of this object as boundary edges.

k/
Figure 4: Using the edge buffer results in an incomplete rendering
of the silhouette of the open box. This is because the boundary
edges do not end up with a FB = 11 labeling.

Figure 5: By rendering the edges with FB ~ 00 we correctly
render the boundary edges for front and back facing polygons.

Figure 6: By allowing the artist to designate which edges are to be
always drawn we get a better rendering of the open cube.

41

11111

00010
. 1

00001

11111

Figure 7: A closed polyhedral object showing the use of the A bit.
The edges around the base are allways rendered thus highlighting
the essential shape of the object. In the demo program the artist
edges are rendered in red when they are not silhouette edges. The
cone is labeled with the AFBF a B a values that are evaluated for this
view.

whose AFB flags are not 000. In the case of a closed object we
may want to ignore back facing artist edges. Unfortunately, a back
facing artist edge will have FB = 00 thus we are not able to deter-
mine whether this edge should be drawn or not. The addition of
two additional bits with a different processing/update method al-
lows us to drop back facing artist edges. The two additional flags
that we add are F '~ and B '~ for front absolute and back absolute.
Like the related F and B flags the initial value for these flags is 0.
When a front facing edge is being updated we simply OR the cur-
rent value of F '~ with 1, similarly for B a. Thus for a front facing
artist edge the resulting flags will be AFBF~B a = ' 10010' and for a
back facing artist edge the flags will be AFBF~B a = '10001'. The
addition of F'* and B a allows us to easily determine when there is a
back facing artist edge. If we are processing a closed object we can
simply ignore that edge. An example of the use of artist defined
edges can be seen in Figure 7, additionally the example program
that can be found at http://www.cs.ualberta.ca/,,~juancho/edge.html
contains an example of this technique. Three objects are rendered,
a sphere, a cone, and a cube. The sphere contains no artist edges,
the cone contains artists edges around its base, and all of the edges
of the cube are artist edges. In this example the artist edges are
drawn red when they are not silhouette edges.

3 Conclusion

In this paper we presented the edge buffer. This fairly compact data
structure allows us to process silhouette edges, boundary edges and
artist edges. The processing of these edges is done in a consistent
framework. This work is applicable in situations where the object is
stored in a indexed vertex polygon mesh and all of the polygons are
going to be processed. The overhead of this technique is minimal
in storage cost and requires two binary operations per edge. This
approach to silhouette rendering is compatible with most graphics
pipelines that the authors are familiar with. The increased compu-
tation cost is negligible adding less than 1% rendering time in most
situations where we looked at using this method.

The main requirements of this technique are that the objects be
stored as a indexed polygon mesh and that the front and back facing
computation be done. Since this computation is performed in most
modern pipelines we feel that these requirements are minimal and
should not deter the implementation of this technique in a variety
of applications.

4 Acknowledgements

This work was the result of many random interactions. In particular
we would like to acknowledge: Paul Lalonde for putting up with us
during the time we worked on this; The members of the Graphics
group at the University of Alberta for sitting through a couple of
presentations; Oleg Veryovka (Mainframe) and Lisa Streit (UBC)
for discussions on this and many other topics (not necessarily re-
lated).

References

[1] A. Appel, F.J. Rohlf, and A.J. Stein. The haloed line effect for
hidden line elimination, volume 13, pages 151-157, August
1979.

[2] B. Gooch, P.J. Sloan, A. Gooch, P. Shirley, and R. Riesenfeld.
Interactive technical illustration. In Proc. of 1999 ACM Sym-
posium on Interactive 3D Graphics, pages x-x, April 1999.

[3] L. Markosian, M.A. Kowalski, S.J. Trychin, L.D. Bourdev,
D. Goldstein, and J.F. Hughes. Real-time nonphotorealistic
rendering. In Proc. of SIGGRAPH '97, pages 415-420, Au-
gust 1997.

[4] R. Raskar and M. Cohen. Image precision silhouette edges.
In Proc. of 1999 ACM Symposium on Interactive 3D Graphics,
April 1999.

[5] J. Rossignac and M. van Emmerik. Hidden contours on a
framebuffer. In Proc. of the 7th Workshop on Computer Graph-
ics Hardware, Eurographics, September 1992.

[6] T. Saito and T. Takahashi. Comprehensible rendering of 3d
shapes. In Proc. of SIGGRAPH "90, pages 197-206, August
1990.

42

