
Silhouette Rendering Based On Stability Measurement
John Brosz∗ Faramarz Samavati† Mario Costa Sousa‡

The University of Calgary

Abstract

A better silhouette for a mesh can be rendered if we take
into account the stability of edges inside and outside the
current silhouette. Using the dot product between the
normal and the viewing direction we can measure this
stability. This gives us two types of edges: silhouette and
non-silhouette and an associated stability of each. We
apply this classification and stability measure to achieve
several different styles of rendering as well as temporal
frame coherence.

Keywords: Silhouette Stability, Quality Silhouette Ex-
traction, Non-photorealistic Rendering, Temporal Coher-
ence.

1 Introduction

The silhouettes lines on an object that we are render-
ing are very important. In traditional art these lines im-
prove the perception of the mass of an object [Crane
1900][Whitaker 1994]. Frequently artists present us with
simplified representations of objects using just the sil-
houette lines as in sketches, figures, and ink drawings.

The usefulness of silhouettes in helping us see three di-
mension shapes on a two dimensional medium make sil-
houette lines very important in computer graphics. The
use of silhouettes by artists further makes these lines
critical when performing non-photorealistic rendering
(NPR). When extracting and displaying silhouettes there
are still several open problems in dealing with stability,
temporal coherence, artifacts, and stylization.

∗e-mail: brosz@cpsc.ucalgary.ca
†e-mail:samavati@cpsc.ucalgary.ca
‡e-mail:mario@cpsc.ucalgary.ca

In this work we look exclusively at object space extrac-
tion of silhouette from polygon meshes. The reason for
this concentration is that object space silhouettes give us
a one pass solution, as opposed to image space silhou-
ettes where the two rendering passes occur. Two render-
ing passes are necessary as the first rendering is used to
extract the silhouette and the second rendering is used to
display the processing [Saito and Takahashi 1990]. We
are only concerning ourselves with polygonal meshes be-
cause they are currently the most used objects for render-
ing and because their silhouettes most often suffer from
stability and coherence problems.

Our work in this paper finds a stability measure for every
edge of a polygonal mesh. Using these stability measures
we find additional edges that can be considered part of
the silhouette. The resulting silhouette graph highlights
areas of the mesh where the silhouette may be present.
This can be helpful in: reducing the temporal artifacts
when animating, adaptively subdividing silhouette areas
to find better silhouettes, performing precise ink draw-
ings, or applying ink textures to the mesh. In introducing
these stability measures we make the following contribu-
tions:

• We give an explanation of silhouette edge stabil-
ity and its relevance to extracting silhouette from
meshes.

• We show how to extract silhouettes in such a way
that any data structure containing edge information
can be used to find our silhouette stability measure.

• We provide several different methods of applying
stylization to edges in order to achieve NPR render-
ings.

• We obtain silhouettes that are frame coherent.

Section 2 describes work in the areas of silhouette extrac-
tion and silhouette frame coherence. Section 3 overviews
our algorithm for extracting silhouettes and finding edge
stability measures. In Section 4 we provide the basis for
our stability measure. Section 5 provides several meth-
ods of rendering based on stability measures and Sec-
tion 6 discusses the results achieved by these renderings.
Lastly Section 7 provides our conclusions and ideas for
future work.

2 Related Work

Our work in this paper is related to two main types of sil-
houette operations. The first is efficiently extracting high
quality silhouettes. That is, extracting the best possible
silhouette from a mesh. The second silhouette related op-
eration is achieving temporal coherence when renderings
of the silhouette are animated.

Current work with object space extraction of silhouettes
from polygonal meshes has yielded many good results
but these methods have problems with artifacts and
great difficulties in achieving temporal coherence when
animating. Methods that attempt to handle errors in the
silhouettes use inefficient case checks to check all points
in the silhouette to find errors and deal with them. In
other methods the silhouette is created without using
actual edges of the polygon meshes. These methods
have troubles performing visibility culling.

Quality Extraction of Silhouettes
Work has been done on quality extraction of silhouettes
by Pop et al[2001]. In this work silhouettes are extracted
through use of a pre-calculated dual space. Their
dual transform relates a point (x,y,z) with a plane dual
ax + by + cz + 1 = 0 and a plane ax + by + cz + d = 0
with the point dual (a/d,b/d,c/d)[Pop et al. 2001]. An
edge in this dual space is a line segment connecting the
two points that are the duals of the planes tangent to the
faces touching the edge. Silhouette edges are found by
searching for edge duals that intersect the dual of the
viewpoint. In order to perform this operation quickly an
Oct-tree or BAR tree is precomputed and used.

The work done by Pop et al has two major strengths: it is
fast and efficient method of finding every silhouette edge
in the scene and it is very good at tracking changes to the
silhouette as the viewpoint changes. This algorithm also
offers support for tracking non-silhouette edges that are
close to becoming silhouette edges. In our work we have
chosen to use the edge buffer[Buchanan and Sousa 2000]
to find silhouette rather than the faster dual plane because
we must test every edge for every frame of animation
which would be costly with an Oct or Barr tree. Pop et
al’s approach does not address any methods to remedy
artifacts present in the extracted silhouette.

The second work on quality extraction of silhouettes that
we are reviewing is that done by Hertzmann and Zorin
[2000]. A slightly different dual space is used to extract
silhouette edges. The major contribution of the work
by Hertzmann and Zorin that we wish to discuss is their
method of increasing the quality of the extracted silhou-
ette. Rather than simply detecting the edges that separate
a front-facing face and a back-facing face, new edges are
created. All edges where the dot product of the vertex

normal and the viewing direction changes from positive
to negative between the two vertices are marked as hav-
ing a silhouette pass through them. The point where this
dot product is equal to zero is linearly interpolated be-
tween the two vertices’ dot products. The resulting points
are connected to one another forming piecewise linear
silhouette line.

The silhouettes constructed out of this method are bet-
ter silhouette edges than those that follow the polygonal
mesh’s edges. Our approach does not do any such in-
terpolation, instead we use more existing edges (making
visibility culling easier) to indicate areas where a silhou-
ette may be found. This approach gives a solution that
is more general and stable and assists in applying several
different stylizations.

Kirsanov et al[2003] describe an algorithm that creates
a silhouette for a high-resolution mesh that is similar in
structure to the silhouette of a coarse version of the same
mesh. The method is based on loop decomposition and
the resulting silhouette is made of the actual edges of the
original model without the redundancy present on the sil-
houette of the high resolution mesh. Their approach can-
not guarantee the temporal coherence of the silhouette
approximation.

Another method of achieving better silhouettes is through
processing the extracted silhouette and filtering out the
silhouette artifacts. Northrup and Markosian[2000] do
this by projecting the silhouette edges to image space
and removing overlapping parts of the silhouettes and
parts of the silhouette that are considered undesirable
based on fixed rules. Isenberg et al[2002] remove
errors from chains of silhouette edges by projecting into
the Z-Buffer and using this depth information to look
for several error cases. These methods both achieve
some measure of better looking silhouettes but frame
coherence achieved by these results can be worse than
standard results due to cases of error filtering suddenly
being applied to subsequent frames.

Frame Coherence
An exciting property of our work is that it obtains a
degree of frame coherence. The most impressive work
on frame coherence of silhouettes is that done by Kalnins
et al[2003]. In this work the extracted silhouette edges
at the key frames are chained into silhouette loops and
converted into parameterized brush paths that are then
rendered as stroke primitives. Brush paths in the initial
frame of animation are decided by silhouette paths and in
subsequent frames brush paths are indirectly determined
by the closest paths from previous frames. Brush paths
are most often parameterized by a scaled arc length and
using this parameterization stroke styles can be applied
for NPR effects. Between key frames the silhouettes are
adjusted by a linear interpolation between the equivalent

sample points on the two parameterizations of the
silhouette.

Our work considers the unaddressed issue of why silhou-
ette lines change and where these lines come from. By
addressing these topics a robust solution to temporal co-
herence is achieved. Our system also boasts simpler vis-
ibility testing without use of an offset buffer.

Masuch et al[1998] and Bourdev[1998] have also done
work on achieving temporal coherence in line drawings
and non-photorealistic strokes respectively. These two
works are concerned with methods of maintaining the
same parameterization and ensuring the same stroke is
applied to the same line in subsequent frames of anima-
tion. In our work we are able to avoid such problems
because our stylizations are more simple. We are merely
drawing the edges of polygons rather than applying para-
metric stylizations.

3 Overview

For each image rendered the following steps are taken:

• A mesh is loaded into our data structure. The exact
data structure is not important so long as it stores
each edge in the mesh. For our implementation
we have used the edge buffer [Buchanan and Sousa
2000].

• We use the viewing direction to test the faces and
store the state of each edge. For each edge we store
the state of the faces bordering the edge (i.e., front-
facing or back-facing), a bit indicating whether the
edge’s stability is greater than the relevant stability
threshold(Tn or Ts), and a float containing the edge’s
stability measure.

• The gathered information is then used to apply the
chosen stylization method and the mesh is rendered.

4 Silhouette Edges

When dealing with polygonal meshes, we generally de-
fine the silhouette lines as paths following silhouette
edges. A silhouette edge is an edge shared by a front-
facing polygon and a back-facing polygon. These sil-
houette edges include not only the outline of the object
(the contour), but also internal silhouettes within the ob-
ject. We classify the orientation of the mesh’s polygons
by examining the dot product of the polygon normal, N
and the viewing direction, V (a vector from the camera
to the viewing plane). When both of these vectors are
normalized, we end up with a result ranging from -1.0
to +1.0. If N · V = 0 the polygon perpendicular to the

viewing direction and the entire face is on the silhouette.
Otherwise if N · V > 0 the face is front-facing and if N ·
V < 0 the face is back-facing.

The general object space algorithm for detecting silhou-
ette edges is to classify all the faces as front or back fac-
ing, determine which edges share front and back faces,
and then perform the desired silhouette effects or exag-
geration to these edges. Our chosen efficient data struc-
ture for doing this is the edge buffer [Buchanan and
Sousa 2000]. It should be noted that simply drawing
such silhouette lines will result in obscured silhouettes
(i.e., silhouettes on the opposite side of the object) be-
ing drawn. This is handled by hidden line removal (also
know as visibility culling) and is discussed later on in this
paper.

4.1 Silhouette Errors

Polygonal meshes are discrete approximations of the
model’s actual surface(s). The result of this fact that the
silhouette edges we detect are only approximations of the
real silhouette of the model. The set of silhouette edges
we extract are limited to polygonal edges when com-
pared to the model’s actual silhouette because our silhou-
ette only occurs on the edges of the model’s polygons.
This results in three major types of artifacts present in
the mesh (as described by [Foster et al. 2004]): jumping
errors, zig-zag errors, and off-track errors. Jumping er-
rors occurs when the silhouette moves between two lines
of polygons as in figure 1.

Figure 1: An example of a jumping error on left and our
solution on right. Color legend is shown in Figure 2.

Figure 2: Coloring legend.

Zig-zag errors occur when more than one edge of a single
polygon is classified as a silhouette edge as in figure 3.
Off-track edges are edges that technically are silhouette
edges according to the value of the dot product described
above, but are artistically poor. These are often caused by
the coarseness of the mesh and the numerical instability

of the operations performed. Figure 4 shows an off-track
error.

Figure 3: An example of a zig-zag error and our solution
on right. Coloring is same as before.

Figure 4: An example of a off-track error and our solu-
tion on right. Coloring is same as before.

These artifacts become more pronounced when the mesh
is animated. As the viewing direction and the face nor-
mals change, edges may appear and disappear abruptly
between frames of animation. Most of these artifacts
result from edges popping in and out of the silhouette.
These popping effects are distracting and confusing to
viewers. Such effects are demonstrated in figures 5 and
16.

Figure 5: A small rotation of the ape model results in the
circled edges suddenly disappearing from the image.

4.2 Stability of Silhouette Edges

Our proposed solution to the artifacts present in current
silhouette extraction techniques is to measure each sil-
houette edge’s instability. Using these stability measures
we find additional edges that can be considered part of
the silhouette. The resulting silhouette graph highlights
areas of the mesh where the silhouette may be present.

In Figures 1 ,3 and 4, this area is represented by different
colors whose interpretation is provided in 2. The area to-
gether with the stability measure help to avoid silhouette
artifacts.

First of all, however, we must decide when a silhouette
edge is deemed to be unstable. We can say that a sil-
houette edge is stable if this edge is unlikely to disap-
pear from the silhouette if a small change is made to the
viewing direction, orientation or position of the mesh’s
vertices. Conversely, unstable silhouette edges are those
edge that are more likely to disappear with these same
changes. We must also consider non-silhouette edges.
Unstable non-silhouette edges are those that are likely to
pop into the silhouette, and stable non-silhouette edges
are those not likely to pop into the silhouette. Once we
have an idea of how stable a particular silhouette edge is
we can render the edge in a fashion where stable edges
form the bulk of the image and unstable edges merely fill
in faint details.

4.2.1 Polygon Stability

To obtain this estimate of stability for an edge we look
at the polygons sharing that edge. If a polygon is likely
to change state (from being front-facing to being back-
facing or vice versa) we declare the edges adjacent to
the polygon to be unstable. To determine whether the
polygon is likely to change state, we examine the dot
product between the viewing vector and the polygon nor-
mal. Consider a polygon where the dot product value
is close to zero. It is clear to see that slight changes to
the view point, the model, or the model’s orientation, can
easily change the polygon’s orientation from front-facing
to back-facing or vice versa. This makes this polygon an
unstable polygon. In the case where the dot product re-
sult is further away from zero, we find that this polygon
is unlikely to change its orientation.

4.2.2 Edge Stability

Now we consider the edges of the mesh. An edge shared
by two polygons that are both stable are considered as
either stable silhouette edges or stable non-silhouette
edges, depending on the orientation of the two polygons.
Consider the case where an edge is shared by a front-
facing polygon and a back-facing polygon where one or
both of the polygons is unstable. In this case the edge
is currently a silhouette edge but could easily become a
non-silhouette edge. We consider this edge an unstable
silhouette edge. Lastly consider the case where an edge is
shared by two forward-facing polygons or two backward-
facing polygons and at least one polygons has an unstable
dot product result. This tells us that a slight shift in view-

ing direction or polygon orientation could make this edge
a silhouette edge. Therefore we consider this to be an un-
stable non-silhouette edge. Table 1 presents the possible
edge classifications.

Table 1: Stability Classifications Of Edges
Edge Type Dot Product Orientation

Of Adjacent
Polygons

Stable Sil. |N ·V | > Ts for both polys. F,B
Unstable Sil. |N ·V | < Ts for at least one

poly.
F,B

Unstable Non-
Sil.

|N ·V | < Tn for at least one
poly.

F,F or B,B

Stable Non-Sil. |N ·V | > Tn for both polys. F,F or B,B
F = Front facing polygon, B = Back facing polygon.

4.2.3 Controlling Stability

Next we must consider what threshold (T) value marks
the boundary where polygons should be considered un-
stable. We must also note that there are two separate
thresholds we should consider. The first is Ts, a threshold
for silhouette edges, and the second we will refer to as
Tn, a threshold for non-silhouette edges.

Figure 6: Portrayal of our stability based silhouette col-
oring scheme. The range of the unstable silhouette and
non-silhouette colored areas depend on the thresholds Ts

and Tn. Note that ss = |N·V |
Ts

and sn = |N·V |
Tn

.

High values (> 0.20) when used for Ts result in all sil-
houette edges becoming marked as unstable. This be-
comes more and more the case when we are dealing with
fine meshes where the surface is quite smooth. Lower
values of Ts were found to give a good indication of the
edges that were likely to pop out of the image. We found
values in the interval [0.05,0.10] gave good results for
all meshes. Unless otherwise stated in our figures we
have used Ts = 0.07. Figure 7 shows the useful indica-
tor of instability that Ts = 0.07 yields. When examining
Tn we have found that the ideal value for this depends
greatly upon how the user desires to use the unstable non-
silouette edges and marginally on the model you are us-
ing. In the local ink stroke rendering described later in

the paper, we found Tn = [0.05-0.70] useful for creating
ink outlines of images. We found Tn = [0.9−1.0] useful
for filled ink drawings. Examples of different T values
being applied are shown in figure 8.

4.3 Computational Cost

One benefit of this instability measure is that it is compu-
tationally very inexpensive. All of the expensive calcu-
lations (e.g., finding the polygon normals, normalization,
etc) are already calculated for finding extracting silhou-
ettes. Finding the stability of the polygons requires stor-
ing each polygon’s dot product value’s difference from
zero and comparing this value to T , requiring a very
small slow-down. Tracking the stability of each edge re-
quires comparing the stability values for the two poly-
gons. The cost of these comparisons is very small. The
cost of storing these stability values when done in a naive
manner is O(e)+ O(p) (where e = number of edges and
p = number of polygons in the mesh).

5 Rendering

From observing ink drawings we have noticed that sharp
and well defined edges tend to be marked sharply. Fur-
thermore, we found that areas of the silhouette that are
gently curved tend to be colored lighter and have ink ap-
plied over a larger area. Our method can been seen as
marking sections of the mesh where an artist might draw
a silhouette. The areas of the silhouette that are unsta-
ble are areas where the artist is more likely draw more
darkly and the unstable areas are places where the artist
is likely to draw less darkly. We can mimic how far the
artist wishes to extend the silhouette by changing Tn.

We also note that our approach of considering near sil-
houette edges is much like that of DeCarlo et al [2003] in
using suggestive contours. As is mentioned in this work,
artists often exaggerate contours, extending them beyond
the technically existing contour where N ·V = 0 to a con-
tour that would be seen from a different viewpoint.

After determining measures of instability for the silhou-
ette edges, we need to decide upon how we wish to render
these stable and unstable silhouette edges. In our silhou-
ette extraction application, we have experimented with
several different rendering methods to exploit the useful-
ness of this stability measurement.

5.1 Locally Rendering Unstable Edges

The first and least interesting rendering method is to sim-
ply render the stable, unstable, and non-silhouette lines

Figure 7: The ape model rotated with Ts = 0.07 and Tn = 0.00. Stable silhouette edges are shown in black, unstable are
shown in gray. Notice that the edges turn gray before they disappear from the silhouette.

Figure 8: A model of an ape with show with Ts = Tn = 0.0,0.5,0.25,0.50,0.75,1.0 from left to right. Bottom images
are of the silhouette fixed and the model rotated. The traditionally extracted silhouette starts as shaded blue (stable)
and becomes green (unstable) as Ts becomes larger until the entire original silhouette is considered unstable. This is
generally undesirable and is the reason why we usually limit Ts to a value in the range [0.05−0.10].

in black. This rendering style only yields useful results
while Tn < 0.20 by adding a few edges to extend the sil-
houette lines.

A more interesting local rendering method is obtained
by drawing stable edges in black with a wide(r) width
and the unstable edges as shades of grey with smaller
widths. The formulations of the widths and colors are
shown in table 2. This method yields a more aesthetically
pleasing results. Even better results can be achieved with
finer meshes or when the mesh has been subdivided as in
figure 9.

Table 2: Local Method Coloring Scheme
Edge Type Color Width
Stable Sil. 0 max
Unstable Sil. 1

2 (1− s) 1
2 max(1+ s)

Unstable Non-Sil. 1
2 (1+ s) 1

2 max(1− s)

s = (
|Ni·V |

T) s.t. Ni is the normal of the least stable polygon
touching the edge and T is either Tn or Ts based on edge type.
We are referring to color as scale from 0 (black) to 1 (white).

5.2 Applying Shading To Faces

An alternative to drawing lines, it is also possible to cal-
culate the average shade of each vertex and then draw the
polygon faces according to our previous shading scheme.
The result of this shading when Tn = 1.0 is exactly the

Figure 9: Locally shaded silhouettes of a wolf (Tn =
0.40). The left image is the silhouette of the coarse mesh
(550 4s), the right image is the silhouette of the model
after two levels of subdivision (9K 4s).

same as applying perfect diffuse Phong lighting on a light
grey object with a light source fixed at the eye position
(see figure 13). This makes sense as the diffuse shad-
ing used in the Phong lighting equations is based entirely
on |N ·L| and when L = V our shading methods and the
Phong lighting method produce the same results.

Results that are more unique are obtained with smaller
values of Tn. Only faces where all three edges have been
marked as being silhouette or unstable are drawn. In
these situations, we get slight shading effects around the
edges of the silhouette as seen in figure 13.

5.3 Texture Mapping Ink Strokes

The next use of our stability measures is texture map-
ping pen and ink tones to the faces of the mesh. We
have taken the ink tones shown in figure 10 and texture
mapped pieces of those tones to faces of the mesh.

Figure 10: The two collections of ink textures from used
in the ink stroke texture mapping.

We choose darker tones for the faces that are more stable
and lighter tones for faces that are less stable. As before,
only faces where all three edges are part of the silhou-
ette or unstable are drawn. The stability of each face is
chosen to be the same as the stability of the most sta-
ble edge of the face, this creates a ”darker” drawing than
would otherwise be achieved with use of the average or
minimum stability of the face’s edges. The texture coor-
dinates are generated using a simple linear mapping. We
experimented with two different ink tones and typical re-
sults of such renderings are shown in figures 11 and 12.

Figure 11: Model of a gorilla with the first set of texture
tones (10K 4s,Tn = 0.40).

Figure 12: A silhouette textured spheroid on the left. On
the right the silhouette has been locked in place and then
the model has been rotated to better illustrate the grades
texture shading approaching the silhouette (Tn = 1.00).

5.4 Filled Ink Stroke Rendering

Another use we have found for our silhouette stability
measures is to use these measures to create filled ink
strokes as described by Sousa et al [2003]. In this paper
a filled ink stroke is described as ribbon a,b,b′,a′ where
(a,b) are the vertices of a polygonal mesh and (a′,b′) is
found ”by extruding its vertices (a,b) in the direction of
their normals (n1,n2)[Sousa et al. 2003]. The amount of
extrusion in originally used in [Sousa et al. 2003] is based
upon the curvature of the mesh multiplied by a user de-
fined amount. One can think of the area of the silhouette
edges as the area of the mesh an artist might place a sil-
houette stroke in. For our purposes we have based the
amount of extrusion upon the stability of the edge multi-
plied by a user defined amount (max). The exact amount
of displacement used for each type of silhouette edge is
outlined in table 3. All edges are drawn in black. Exam-
ple results are shown in figure 15.

Figure 13: The silhouette-shaded faces of a subdivided wolf model (9K 4s,Tn = 0.3,0.8,1.0 from left to right).

Table 3: Precise ink displacement amounts.
Silhouette Edge Type Displacement
Stable max
Unstable (0.7+0.3∗ s)∗max
Unstable Non-Sil. 0.1+0.6∗ (1− s)∗max

s =
|Ni·V |

T s.t. Ni is the normal of the least stable polygon
touching the edge.

5.5 Subdivision

One problem with our local rendering method is that
coarse meshes suffer from artifacts when Tn is larger than
0.05 (depending on the mesh). These artifacts are long
edges that stretch further into the center of the object
than is reasonable or reveal the faces of the mesh. For
an example see the left image of figure 9. A reason-
able way to counter this is through use of subdivision
to create smaller edges and faces. Using Loop subdivi-
sion[Schroeder and Zorin 1998] we subdivide the faces
of the mesh that contain unstable edges making the faces
smaller so they are less noticeable in the final image. This
is shown in right image of figure 9.

5.6 Hidden Line Removal

An important task when rendering the silhouettes we
have detected is in ensuring that the obscured silhouette
lines on the back of the mesh are not shown to the user. In
our system we achieve this by rendering the mesh in the
object’s chosen fill color with the vertices of its polygons
displaced a small fraction along the reverse of the ver-
tex normal. This is the same approach as used by Sousa
[2003]. An example of silhouettes with and without hid-
den line removal is shown in figure 14

5.7 Temporal Coherence

An important side benefit of rendering based on the sta-
bility of each silhouette edge is that we achieve a tem-
poral coherence when the mesh is animated or rotated.
This coherence is due to the fact that silhouette edges no

Figure 14: A model of a gorilla with (right) and without
(left) hidden line removal.

longer suddenly appear or disappear from the silhouette.
Instead they are gradually shown as they become more
stable and fade from view as they become less stable. A
single silhouette line is, due to their unstable nature of
the dot product over a surface, very unstable. Instead of
finessing the line to interpolate between different states
as in [Kalnins et al. 2003] we represent the surrounding
edges of the mesh that will replace the silhouette line as
in 16. This gives us a more stable solution.

6 Results and Discussion

We selected eight meshes ranging from 500 to 268,000
triangles. Our system achieved fast rendering rates with
real time performance for models of less than 30,000 tri-
angles and at interactive rates with models of less than
200,000 triangles. These results were obtained on a
Athlon XP2200 with a GeForce2 GTS graphics card.

Local Rendering: For fine meshes our local rendering
technique provides results that are more pleasing than
traditional results. Figure 9 shows such results. These
local rendering results are more pleasing than traditional
methods since some simple shading is performed.

Texture Mapping Ink Strokes: The result achieved by
the texture mapping achieves an ink drawing like ren-
dering. The first texture collection was found to be most

Figure 15: Ink stroke rendering with different silhouette stability measure Tn. From left to right: Santa Claus
(51K 4s,T n = 0.64), the Stanford bunny (70K 4s,Tn = 0.70) and the Igea artifact (268K 4s,Tn = 0.85,0.60).

useful with Tn values in the 0.40−0.60 range, the second
collection gave the best results for Tn = 0.9− 1.0. Ren-
derings are real-time for polygonal meshes of less than
10,000 faces and can be viewed at interactive speeds for
meshes of larger sizes.

Filled Ink Stroke Rendering: The visual result
achieved by the precise ink rendering style using our sta-
bility measures is comparable to that of the more time
consuming measures used in [Sousa et al. 2003]. This ink
stroke method requires additional time compared to our
local rendering method due to the calculation of vertex
normals. The rendering time also increases as polygons
are now being rendered (instead of lines).

Temporal Coherence: We have found that by color-
ing and texturing our models based on edge stability we
achieve temporal coherence as seen in figure 16.

7 Conclusions And Future Work

We have developed a 3D silhouette extraction system that
provides us with higher quality silhouettes. We do this
by measuring the stability of edges based upon the sta-
bility of dot product between the viewing direction and
face normals. This stability measure provides a please
method of shading, a guide for apply NPR ink textures
and strokes, and can be used to achieve temporal coher-
ence. These silhouettes include more edges and do not
suffer from distracting artifacts when animated. These
stability measures are very inexpensive provided exhaus-
tive silhouette detection has already been performed. Ad-
ditionally we have applied a two different methods of

NPR rendering based upon our stability measure. We
have achieved fast and good looking results with tempo-
ral coherence.

In our future work we would like to consider a better
measure of relative stability within the classes of edges.
Our current measure of relative stability (referred to as
s in Tables 2 and 3) considers an edge between two flat
faces that are close to parallel with the viewing angle as
stable as an edge with one face close to parallel with the
viewing angle and the other edge more perpendicular to
the viewing angle. We would like to find a measure that
separates these instabilities. We also believe that varying
the threshold (Tn) across the mesh based upon local mesh
measures could yield interesting results.

In our research we have also experimented with adaptive
subdivision. We use the adaptive subdivision to limit sub-
division to the faces containing unstable edges. It may be
possible that over many subdivisions of a given mesh the
cost of many levels of adaptive subdivision, resulting in
fewer faces, will be less than testing every single face of
the mesh when dealing with extremely large meshes. We
have not found scenarios where this is the case, but future
work should be done in this area.

We feel that our stability measure is an inexpensive and
useful technique that can be used with many more exist-
ing NPR techniques. Our future work will include apply-
ing our stability measures to more NPR techniques.

Acknowledgements
Our special thanks go to Kevin Foster for providing us
with the original edge buffer silhouette extraction code
that our system is based upon. We are also very grateful
to Ruth Hart-Budd for her editing contributions.

Figure 16: Model of Beethoven’s bust being rotated. Top row shows the silhouette extracted without considering
stability, the bottom row shows our rendering with Tn = 0.40.

References

BOURDEV, L. 1998. Rendering Nonphotorealistic
Strokes with Temporal and Arc-Length Coherence.
Master’s thesis, Brown University.

BUCHANAN, J., AND SOUSA, M. C. 2000. The edge
buffer: a data structure for easy silhouette rendering.
In Proceedings of the first international symposium on
non-photorealistic animation and rendering, 39–42.

CRANE, W. 1900. Line Form. George Bell Sons, Lon-
don.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S.,
AND SANTELLA, A. 2003. Suggestive contours
for conveying shape. ACM Transactions on Graphics
(TOG) 22, 3, 848–855.

FOSTER, K., SOUSA, M. C., AND SAMAVATI, F. 2004.
Multiresolution for polygonal silhouette error correc-
tion. Accepted to ICCSA 2004.

HERTZMANN, A., AND ZERIN, D. 2000. Illustrating
smooth surfaces. In Siggraph 2000, Computer Graph-
ics Proceedings, ACM Press / ACM SIGGRAPH / Ad-
dison Wesley Longman, K. Akeley, Ed., 517–526.

ISENBERG, T., HALPER, N., AND STROTHOTTE, T.
2002. Stylizing silhouettes at interactive rate: From

silhouette edges to silhouette strokes. Computer
Graphics Forum 21, 3, 249–258.

KALNINS, R. D., DAVIDSON, P. L., MARKOSIAN, L.,
AND FINKELSTEIN, A. 2003. Coherent stylized sil-
houettes. ACM Transactions on Graphics (TOG) 22,
3, 856–861.

KIRSANOV, D., SANDER, P. V., AND GORTLER, S. J.
2003. Simple silhouettes over complex surfaces. In
Proceedings of the Eurographics/ACM SIGGRAPH
symposium on geometry processing, 102–106.

MASUCH, M., SCHUMANN, L., AND SCHLECHTWEG,
S. 1998. Frame-to-frame coherent line drawings for
illustrative purposes. In Proceedings of Simulation und
Visualisierung ’98, SCS Europe, 101–112.

NORTHRUP, J. D., AND MARKOSIAN, L. 2000. Artis-
tic silhouettes: A hybrid approach. In Proceedings of
NPAR ’00, 31–37.

POP, M., DUNCAN, C., BAREQUET, G., GOODRICH,
M., HUANG, W., AND KUMAR, S. 2001. Efficient
perspective-accurate silhouette computation and appli-
cations. In Proceedings of the seventheenth annual
symposium on Computation Geometry, 60–68.

SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible
rendering of 3-d shapes. In Proc. of SIGGRAPH ’90,
197–206.

Figure 17: Terrain rendered with local shading (49K 4s,Tn = 0.35).

Figure 18: Terrain rendered with ink texture mapping (33K 4s,Tn = 0.90).

SCHROEDER, P., AND ZORIN, D. 1998. Subdivision for
modeling and animation. In ACM SIGGRAPH Course
Notes, vol. 12.

SOUSA, M. C., FOSTER, K., WYVIL, B., AND SAMA-
VATI, F. 2003. Precise ink drawing of 3d models.
Computer Graphics Forum 22, 3, 369–379.

WHITAKER, S. 1994. The Encyclopedia of Cartooning
Techniques. Running Press, Philadelphia.

