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Abstract. This paper presents a method for automatic removal of arti-
facts that appear in silhouettes extracted from polygonal meshes due to
the discrete nature of meshes and numerical instabilities. The approach
works in object space on curves made by chaining silhouette edges and
uses multiresolution techniques based on a reverse subdivision method.
These artifact-free curves are then rendered in object-space as weighted
3D triangle-ribbon strips.

1 Introduction

There has been significant research in non-photorealistic rendering focusing on
quality silhouette extraction and rendering, in particular for 3D mesh-based
silhouette line stylization algorithms [8,11,12,15]. Such algorithms are usually
organized in four main steps: (1) extraction of individual silhouette edges from
the mesh; (2) linkage of silhouette edges together to form long, connected paths,
or chains; (3) removal of silhouette artifacts from the chains; (4) stylization
of the strokes which involves two main sub-processes: smoothing the chain by
fitting splines or using an interpolation/approximation scheme and controlling
line quality attributes along the chain such as width and brightness.

A problem with extracting silhouette curves from polygon meshes is that the
resulting curves may contain jagged artifacts because of numerical instability
and unsuitable edges from the mesh (the mesh is a discrete approximation of a
surface). These artifacts compromise the quality of the stroke stylization process
and subsequent rendering results. Although there is a great deal of work which
extracts silhouettes from polygonal meshes, there are few examples that attempt
to correct errors and artifacts that can be created when this extraction takes
place (step 3 ).

In this paper, we introduce a new approach to remove artifacts from chains
of silhouette edges based on multiresolution. Because silhouettes created from
polygonal meshes have a discrete nature, use of multiresolution systems that di-
rectly operate on discrete data are fitted effectively. Samavati and Bartels[1,13]
provide this kind of multiresolution based on reversing subdivision. In their sys-
tem, resolution can be increased and decreased efficiently without use of wavelets.
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We employ this kind of multiresolution to remove silhouette artifacts automati-
cally and efficiently. Furthermore, we can also use subdivision consistently with
the multiresolution filters to contribute to the stroke stylization step.

2 Related Work

(1) Object-space silhouette extraction: There are many methods that
extract silhouettes from polygonal meshes, including systems based on proba-
bilistic testing [11], “Gauss Maps” [6], duality [7], cone maps[14] and adjacency
information[2]. Any of these methods can be used with our error-removal sys-
tem, provided they create linked silhouette chains. In this work, we extend the
“edge-buffer” method[2] to create these chains.

(2) Removing silhouette artifacts: Works in this area either (1) correct
errors from silhouette chains created from the actual mesh edges [8,12] or (2)
create new, more suitable, silhouettes without use of the edges in the mesh [3,
7]. Correa et al.[3] avoid errors by creating 2D u,v-images which are basically
projected images of the 3D scene with special colors on different u,v coordinates
on the mesh. Their system analyzes pixel-neighborhoods and creates curves from
the areas that contain silhouettes. Mesh edges are not used in this process; thus
errors are avoided. Northrup and Markosian[12] remove errors by rendering raw
silhouettes to image-space and case-checking. This includes elimination of unde-
sirable silhouettes, redefinition of uneven endpoints so that they correspond and
joining of edges to create smooth chains. Isenberg et al.[8] also correct silhouette
errors directly from the edges using case-checks and solutions. However, their
corrections are preformed in object-space. Hertzmann and Zorin[7] present an
object-space approach that avoids errors by creating more suitable silhouette
edges. These new edges are created by approximating points on the mesh edges
where the silhouette would cross if the mesh was a smooth surface.

Our method, like Hertzmann and Zorin’s[7], is general—we remove all errors
without requiring classification of errors and evaluation of fixes. However, like
Isenberg et al.[8] and Northrup and Markosian[12], our system removes errors
from silhouette chains created from edges in the mesh instead of procedurally
generating new edges. This approach desirable due to the speed and simplicity
of extracting silhouette edges from a mesh.

(3) Multiresolution methods: Finkelstein and Salesin[5] demonstrate the first
use of multiresolution in NPR with a curve-editing system based on wavelets.
Furthermore, Kirsanov et al. [10] use coarsening methods to simplify silhouettes
from detailed polygonal meshes. More information on this type of multiresolution
is found in Stollnitz et al.[16]. We use a different type of multiresolution, “local”
[1] and “global” [13] multiresolution, based on reversing subdivision to remove
errors and provide a better system to simulate smooth pen strokes.

We now describe the main steps of our algorithm: (1) Create silhouette chains
(Sec. 3), (2) Apply our multiresolution system to remove errors (Fig. 3, Sec. 4);
and (3) Stylize the chains (Sec. 5). We then present and discuss results (Sec. 6)
and provide conclusions and directions for future work (Sec. 7).
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3 Silhouette Extraction

The definition of a silhouette edge for object-space methods is any edge shared
by one front-facing polygon and one back-facing polygon. Upon loading a mesh,
our system constructs an edge-buffer [2]. The edge-buffer, which can be viewed
as an indexed graph of edges, is a fairly compact data structure that provides a
fast lookup method requiring, for each frame, two binary operations per edge to
extract silhouettes in object-space. Further details are supplied in [2].

3.1 Chains

The algorithm proceeds to the point where the edge-buffer has been traversed
and all silhouette edges properly extracted. To better reproduce the artistic style
described in Sec. 1, we use a two-pass algorithm to create a small number of long
silhouette chains. As a first pass, our system links the silhouette edges on the
model by finding the connected components of the edge-buffer. As a second
pass, our system finds the matching vertex numbers on the bounds of each
chain and joins these chains. If more than two chains can be linked, we join any
chains that will create a loop first. Looping chains take precedence because our
multiresolution system (Sec. 4) handles looping and non-looping chains slightly
differently (non-looping chains are interpolated at the ends) and if a chain that
should be looping is instead identified as two separate strokes, small artifacts
might be created due to the interpolation at the ends of the chain.

This chaining method cannot guarantee the longest connected chains. How-
ever, it does generate satisfactory long chains for use with the multiresolution
filters.

3.2 Artifacts

The chains extracted in the processes described above may contain artifacts
such as zig-zags, overlaps and loops (Fig. 1). Such artifacts exist for two main
reasons: (1) numerical instabilities in silhouette edge detection where many of
the faces are viewed nearly edge-on; (2) meshes are just approximations of the
underlying continuous surfaces and the edges that make them up are almost
always unsuitable to be used as silhouette edges.

The set of four images in Fig. 1(b) illustrate different combinations of these
artifacts. Silhouettes for these images have been calculated for an angle other
than that displayed. Observe the black line, which is the actual silhouette, the
unshaded front-facing polygons and the shaded back-facing polygons. As the
silhouette crosses the surface, it moves back and forth across some invisible
threshold, sometimes by many edges at a time. Clearly, edges taken directly from
the mesh are not ideal to construct the silhouette. The invisible threshold that
the extracted silhouette crosses is approximately where it should actually appear.

We interpret silhouette artifacts from the point of view of low and high-
frequency portions of the silhouette curve. The extracted silhouette can be
viewed as high-frequency noise components along the real silhouette curve. The
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Fig. 1. (a) The silhouette of an ape mesh with highlighted errors. (b) Four images
showing various silhouettes and underlying mesh that generated them. The silhouettes
are presented at a perturbed view to provide a better understanding of the cause of
the errors. Shaded polygons are back-facing.

challenge is to remove the high-frequency noise which occurs sporadically along
the chain. We meet this challenge by using multiresolution filters, as described
in the next section.

4 The Multiresolution Approach

The algorithm proceeds to where complete chains have been constructed from
the silhouette edges. We denote these ordered sets of points as Ck+1. Using
multiresolution, Ck+1 can be decomposed to a low-resolution approximation Ck

and a set of high frequency details Dk. Thus, Ck shows overall sweep of the
silhouette and Dk shows waves and zigzags of the silhouette. In functional view,
Ck+1 is coefficient vector of high resolution scaling functions, Ck is coefficient
vector of low resolution scaling functions and Dk is coefficient vector of Wavelet
functions. The original data Ck+1 can at any time be reconstructed from Ck and
Dk. The process of transforming Ck+1 to Ck and Dk is called decomposition and
generating the original data Ck+1 from Ck and Dk is called reconstruction. These
can be applied to Ck+1 more than one time. We can specify the multiresolution
operations in term of the banded matrices Ak, Bk, P k and Qk. The matrix Ak

transforms Ck+1 to Ck:

Ck = ACk+1 (1)

and Bk extracts details:

Dk = BCk+1 (2)

P and Q act on Ck and Dk to reconstruct Ck+1

Ck+1 = PCk + QDk (3)

These matrices have a regular structure for every resolution. The only differ-
ence between Ak and Ak−1 is their size. Consequently, the superscript of matrices
can be removed. Because of the regularity of these matrices, they can viewed as
filters that operate on Ck+1, Ck and Dk.
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In order to find these four matrices, most multiresolution research works in
the area of wavelets. In the case of smooth curves, the resulting wavelets are not
very interesting (see appendix of Finkelstein[5] or page 94 of Stollnitz et al.[16]).
With our method, Ck+1 is a discrete approximation of a smooth curve and we
just need to use appropriate A, B, P and Q and we do not need wavelets ex-
plicitly. Therefore, a discrete approach of multiresolution systems that directly
operates on discrete data is fitted here more effectively. Bartels and Samavati[1]
and Samavati and Bartels[13] provide this kind of multiresolution system based
on reversing subdivision. In this kind of multiresolution, decomposition and re-
construction can be done efficiently without use of wavelets. They have also
shown their results are more effective for data sets than conventional wavelets.
In this work, we use their multiresolution filters that are constructed based on
reversing Chaikin subdivision, Cubic B-Spline subdivision and Dyn-Levin sub-
division. We present the masks of their Cubic B-Spline subdivision in Fig. 2a.
These filters are much easier than their counterparts in Finkelstein and Salesin[5]
and Stollnitz et al.[16].

For implementation, we just need to apply A and B on Ck+1 to obtain Ck

and Dk. Again by applying P and Q filters on Ck and Dk, or a modified version
of Dk, we can reconstruct Ck+1. Note that these processes are simple linear time
operations which do not use any extra storage. The resulting filters of Bartels
and Samavati[1] are obtained based on solving the best Ck via a local least
squares problem while the resulting filters in Samavati and Bartels[13] are ob-
tained based on a global least squares problem. We call these two approaches
local and global multiresolution. Note that these filters produce the optimum
solution intrinsically without any extra-work in implementation. In the case of
local multiresolution (Fig. 2), the implementation is very simple and straight-
forward. However, Ck is just a good approximation of Ck+1 in a local sense. In
contrast, Ck found from Ck+1 with a global manner is the best solution possible
(although it is more complicated than the local one). In fact, in the global case,
the matrices A and B are full matrices. Nevertheless, they still have the regu-
lar structure. In order to achieve linear time operations, we solve the following
banded system for decomposition [13]:

(P tP )Ck = P tCk+1 (4)

(QtQ)Dk = QtCk+1 (5)

In our experiments comparing local and the global multiresolution for silhou-
ette error removal, we have found that the global MR generally creates better
results (Sec. 6). However, the drawback of this approach is the need of solving
the systems in equations 4 and 5.

4.1 Error Removal Pipeline

In this section, we provide details on how these filters can be used to eliminate
silhouette artifacts. Our multiresolution pipeline consists of decomposing silhou-
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Fig. 2. (a) The bands of the matrices for Cubic B-Spline multiresolution (the A, B, P
and Q diagrams represent all non-zero entities of a row for the A and B matrices and
of a column for the P and Q matrices). The gray circles show the center entity. (b)
Results of running our system on the silhouettes in Fig. 1b.

ettes to some level of detail, then reconstructing with only a small percent of
the high-frequency details to remove errors (Fig. 3).

We modify equation 3 so that it can lessen the amount of details included in
reconstruction:

C̄k+1 = PCk + eQDk (6)

where e is a scalar between 0.0 and 1.0 that varies the percentage of the
details data added to the coarse data. The higher the value of e included, the
greater the percent of the details data is included and the closer the stroke gets
to the original data extracted.

Recall that the the low frequency path of the raw silhouette chain is generally
correct (Fig. 1). The errors are all high-frequency divergences from this path.
Since the high frequency portion of the silhouette chain is extracted and stored
in details, a lower value for e eliminates more errors as a lower percent of the
high-frequency details are included in the reconstructed strokes. We were able
to generate accurate strokes suitable for scientific illustration with values from
0.0 to 0.4 for e, depending on the detail in the original mesh. A discussion of
this is provided in Sec. 6.

Note that reconstruction can continue to a higher level of detail than the
original chain. This is done by eliminating QDk in equation 6 and results in an
increase in smoothness. This is illustrated in the rightmost image in Fig. 3 (note
quality improvement on the ape’s head).

In our implementation, the user has control over the amount of times to de-
compose and reconstruct, the method to do this decomposition and reconstruc-
tion (Chaikin, Cubic B-Spline or Dyn-Levin), the scope of the method (local or
global) and the amount of details to include in the reconstruction (the e value).
Note that low-pass filters do not give this level of control.



Reverse Subdivision Multiresolution 253

Fig. 3. We use Multiresolution filters to decompose and reconstruct silhouette chains
without errors. Here is an example for an ape mesh with 7434 faces. We decompose
twice from level C0 to C−2 with global cubic B-Spline filters. Then, we reconstruct
to level C0 using minimized details (here, e = 0.3). The effect of this process is the
removal of errors. Note that we can further process the mesh (to level C1 or higher)
without any details to smooth the strokes. This is equivalent to a subdivision step.

5 Rendering

For the results in this paper, we use the angled-bisector strip method as presented
by Northrup and Markosian [12] and vary the weight and intensity of the stroke
based on its depth into the scene. To preform Hidden Line Removal (HLR), we
rely on the depth buffer. The original mesh is drawn in white and the strokes are
drawn, slightly displaced towards the viewer. Thus, any strokes on the back of
the surface will be occluded by the white mesh with the z-buffer. This approach
does not work well for small meshes because the processed strokes do not follow
the exact mesh; however it works well for medium to large size meshes. We leave
an exact fast object-space solution to this problem for future work.

6 Results and Discussion

Our system achieves fast computation rates including preprocessing (building
the edge-buffer) and rendering (chaining, multiresolution filtering, and stroke
stylization). Furthermore, we have found that our method removes most errors
with two levels of decomposition and reconstruction and a small value for e.
Our method gains speed over other silhouette error correction methods because
we do not need to identify errors to remove them. Thus, we do not need a
large set of error condition/correction cases that must be evaluated locally for
individual portions in the silhouette chain. However, this means that our method
can inadvertently remove important features. Our system presents a tradeoff
between feature-preservation and quality of filtering (directly related to the value
e). Although this is not an issue for detailed meshes (features are preserved even
with low levels of e), it can sometimes be impossible to remove errors from
silhouettes of simple meshes without losing stroke accuracy (Fig.6).

We now present running times for different mesh sizes and the speed differ-
ence between local and global filters. Then we discuss quality of the results with
notes on mesh size, user input and the different filter types.
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Fig. 4. From left to right: Original silhouettes from an asteroid, the results of process-
ing and alternate views of the strokes with the mesh.

Fig. 5. Removing silhouette errors on large meshes is more important when zooming
in on the mesh. Here, we circle the errors on three enlarged areas on the foot and
provide our corrected strokes. Note that the errors are removed and the strokes are
still very accurate to the mesh.

(1. Timing:) We have found that the local multiresolution filters generate
realtime results for medium sized meshes (around 30,000 faces) and interactive
rates for larger meshes. With two levels of decomposition and reconstruction and
local Cubic B-Spline filters, the ox takes 0.414 milliseconds to filter (Fig.6), the
ape 0.825 ms (Figs. 2, 3), the asteroid 1.065 ms (Fig. 4) and the foot 63.887 ms
(Fig. 5). These results are ordered in increasing mesh size and are averaged from
256 tests with chains taken from the mesh at different angles. Clearly, our filters
are efficient and even large meshes such as the foot run interactively.

As expected, the global multiresolution method is slower. For the ape and
asteroid models, two levels of decomposition with global Cubic B-Spline filters
take 7.779 and 19.75 ms respectively. This is a large increase over local times,
but the method still preforms quickly for less detailed meshes where accuracy
is most important. The added accuracy of global methods over local methods is
not required for high resolution meshes. Running times and result images were
gathered from a 2.65 GHz Pentium 4 with OpenGL/ATI Quadro graphics.

(2. User Input:) We found that medium to large meshes require little or
no user-input (Figs. 4, 5). Error free strokes with no accuracy loss can almost
always be generated with local multiresolution using two levels of decomposition
and reconstruction and some small e value for details. The more detailed the
mesh, the smaller e can be while still maintaining accurate strokes. We generally
employed e <= 0.1 for meshes larger than 10,000 triangles. For smaller meshes
(Figs. 3, 6) or for features on larger meshes only defined by several triangles,
the user must use a global method (see next point on multiresolution type) and
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Fig. 6. Left to Right: A silhouette from a low resolution ox mesh, processed strokes with
global Cubic B-Spline filters, an alternate view of the original and processed strokes,
and processed strokes with global Chaikin filters. Note that the corrected strokes do
not adhere well to the original mesh.

carefully adjust the amount of details and the decomposition and reconstruction
steps to generate accurate strokes. It is in these situations that varying e results
in a noticeable tradeoff between error-removal and feature preservation.

(3. Multiresolution Type:) We have tested the Cubic B-Spline, Dyn-Levin
and Chaikin systems [1,13] with local and global multiresolution methods. The
global method has produced more accurate results. This increase in accuracy can
be seen in the right column of Fig. 2b where global methods are used compared
to the left column where local methods are used). However, as presented in the
timings section, the expense of global methods rises with mesh size. Fortunately,
the extra accuracy given is usually only useful for small to medium sized meshes
where the global method preforms in in realtime. For the figures in this paper, we
have employed global methods for the smaller meshes in Figs. 2b(right column),
3 and 6 and have employed local methods for the larger meshes in Figs. 2b(left
column), 4 and 5.

7 Conclusions and Future Work

We have presented a method to eliminate errors in polygonal silhouettes using
multiresolution filters. Our method represents an improvement over previous
works because it does not require specialized error/solution cases to remove
errors—our solution is general. This improves efficiency over other methods be-
cause time is not spent identifying errors and looking up solutions. Furthermore,
our system contributes to the stroke stylization step by automatically smooth-
ing coarse chains. Finally, our system complements systems which create coarse
approximations of silhouettes from very detailed meshes[10].

The drawback to our method is that it is not exact. We do not guarantee that
errors will be removed and that accurate strokes can be generated for all meshes.
Our approach can only be used to automatically generate accurate strokes for
medium to large size meshes while coarser meshes can require a great deal of user
input to create good output without losing detail. Finally, our method does not
present a good way to eliminate unessential silhouette chains and an accurate
hidden-line removal method must be developed for this system.
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Despite these limitations, our method provides a new avenue to remove sil-
houette errors from polygonal silhouettes that is accelerated and more general. A
future extension could be to improve the numerical stability during silhouette ex-
traction with techniques that compute better normal vectors [17]. Furthermore,
our system could be used to process non-silhouette strokes as an improvement
to traditional B-spline or low-pass filtering methods [4,15]. Finally, our method
could be combined with the approach presented by Kalnins et al.[9] for coherent
silhouettes.
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