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Abstract

This paper introduces a method for creating naturally varied plants from a given basic plant model. Previous
techniques create variation in plants by introducing local randomness to the plant model’s description. However,
randomness is restricted by the model’s parameterization and lack of correlation between local features making
varying global properties (e.g. branch and stem curvature) difficult. We present a biologically-based method which
mimics the underpinnings of variation in real plants. This method uses a feedback control system to simulate
the biological growth mechanism by which a plant naturally responds to environmental factors. We show that
our technique creates more realistically varied models by modelling growth responses to stimuli, and provides a
method for quickly creating numerous similar models, none of which are exactly alike.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Creating a natural-looking plant model is not a simple task;
creating hundreds of plants for a scene is even more diffi-
cult. In the quest to attain realism, individual plant models
have become increasingly complex through the addition of
detail. Thus, manually modelling each individual plant in a
scene is not acceptable. Our objective is to design an auto-
matic, controllable approach for generating many naturally
varied models from a single given model with little effort.
This is achieved by subtly altering the overall shape of stems,
branches and leaves requiring local natural variation to be
correlated over the entire lengths of these elements.

Previous techniques to automatically generate collections of
similar models include instancing [DHL∗98], interpolation
and stochastic modelling [FF80]. While these techniques are
sometimes useful there are weaknesses. With instancing the
exact repetition of a small set of models may be immedi-
ately recognized. Interpolation between a small set to cre-
ate intermediate models is dependent on both the interpo-
lating function and the interpolated parameters. Often the
results look too mechanical due to exact smooth interpola-
tion. Stochastic modelling adds randomness to the model’s
description and can be combined with instancing and inter-
polation. However, variation is limited by the model’s pa-
rameterization and the qualities of random noise. Since pa-
rameters typically represent local features, random alteration
causes local variation which is globally uncorrelated. Con-
trol and predictability are lost, leaving no assurance of the
model’s resemblance to the desired biological object.

† {streitl, federl, mario}@cpsc.ucalgary.ca

To model shape variation of branches, stems and leaves lo-
cal variation must be correlated to collectively define overall
shape. We correlate variation by approximating the process
of natural plant variation. In the world of living structures,
growth defines form [Tho61]; thus, variations in the growth
process create variations in form. We model variation by
simulating growth responses. During growth a plant encoun-
ters an abundance of stimuli to which its type and degree of
response result in variation across similar plants. Due to the
stimuli’s abundance and lesser importance to the response,
it is infeasible to model every influence or stimuli thus an
approximation to combined influences is used. These corre-
lated responses which define the overall shape of branches,
stems and leaves are the focus of this paper. By introduc-
ing the same “type” of variation found in real plants popu-
lations, without exceeding or deviating from it, the results
gain realism while the variation is constrained to maintain a
resemblance to the original model or object.

This paper shows that modelling plant structure variation
through growth process simulation results in naturally varied
plant models. First, we present an approach to vary shape by
closely simulating differential growth through surface hor-
mone changes. We then abstract this approach to alter the
plant’s skeleton by approximating plant growth responses
and movements. We show that this method can create natural
variation at multiple levels of detail and can quickly create a
collection of similar plants with little effort.

2. Background

Creating a collection of different looking, yet similar objects
is a common problem in natural phenomena modelling and
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Figure 1: (A) and (B) Random stem segment angle varia-
tion in which overall shape is lost. (C) Interpolation of two
desired silhouette curves defining branch length yield an un-
desirable straight silhouette.

can be paralleled with the study of natural plant variations.
Just as Remphrey and Prusinkiewicz [RP97] categorize nat-
ural variation within a single plant structure as random
or organized, modelling methods include random variation
techniques which perturb a model’s parameters randomly
around a default value (i.e. stochastic modelling [FF80])
and organized techniques which methodically alter param-
eters according to predefined interpolants and functions as
Prusinkiewicz et al. did with single plants [PMKL01]. While
both random and organized methods produce sufficient re-
sults in some cases, both tend to lack predictability and con-
trol especially over global properties due to randomness or
local feature specification and both can lack correct or com-
plete ranges of variation faithful to botanical structures with-
out careful specification of the parameters. These complica-
tions are shown in Figure 1.

Lintermann and Deussen [LD99] mention plant modelling
techniques as having two separate motivations and goals:
1) to simulate natural plant development and is biologically
motivated and 2) to generate only visually correct shapes of
plants [DHL∗98]. Our aim is the latter, but to achieve vi-
sually plausible results by approximating growth responses.
Similar to Lintermann and Deussen our aim is to main-
tain user control and predictability of results, but in con-
trast, we automatically add variation instead of interactively
creating varied plants. Weber and Penn [WP95] specify a
model for creating plant geometry and model curves and
stems as a functional specification through local segment al-
teration with random perturbation. So, while the local per-
turbations are globally correlated, exact functions directly
control shape variation and thus require function alteration.
Aono and Kunii [AK84] provide an interactive method of
indirectly specifying variation using attractors and inhibitors
to alter stem angles, similar to our approach. However, their
method is not automatic nor biologically based and tends to
have some of the affects of organized approaches.

Other methods of creating varied plants tend to be biolog-
ically motivated and simulate natural plant development.
In an effort to preserve control some have developed cus-
tomized procedural models [Opp86, dREF∗88, Hol94] that
have incorporated overall shape through use of “functional
modelling”, free-form deformation and tropisms. Functional
modelling as well as the rules defining tropisms have the
same drawbacks of organized approaches mentioned above

and free-form deformation is very user intensive. Some
methods incorporate strict detailed [dREF∗88] botanical
rules which control local properties [PL90]. These meth-
ods add variation by functionally (random or otherwise) al-
tering local parameters or by probabilistically selecting de-
velopment rules (e.g. Stochastic L-systems), but have little
control over global shape, such as shape of stems, branches
and leaves. Rules defining responses to environmental fac-
tors (e.g. branching, space occupancy etc...) [Coh67, BM02,
Gre89] have also been presented, but tend to have strong
stochastic components and are less controllable or need mul-
tiple iterations to achieve a desired result. Others tend to de-
fine detailed biological local responses [PJM94] represent-
ing specific stimuli [MP96,COMM94] or complex physical
simulation [HBM03].

Our aim is to automatically add believable variation to an ex-
isting satisfactory model regardless of creation approach or
model geometry. Variation is added to the skeleton of stems,
branches and leaves, without geometric or physical surface
knowledge and is generated by approximating the natural
growth process to ensure plausible results. Modelling vari-
ation requires modelling form, and the study of form has
been ongoing for decades. D’Arcy Thompson [Tho61] rec-
ognized the relation of growth to biological form, stating that
form in plants is determined by the rate of growth in various
directions. Varying growth rates can be observed on multi-
ple scales such as cell division, internode elongation, rate
of bending of stems or roots, etc. Simulating growth to cre-
ate form is thus a natural approach to generating variation at
multiple levels of detail. The next two subsections overview
plant growth motions and a relevant biological model.

2.1. Plant Growth Movement and Form

Plant growth occurs both at the apex or tip as well as in a
specific region displaced from the tip. As the plant grows,
this growth region migrates and differential growth com-
bined with the displacement of the growth region cause the
apex to “move” as the plant grows upward. This phenomena
has been observed in both plant stems and roots [Han00].
These growth related movements can be directly related to a
particular stimulus (tropic), or be triggered by the stimulus
but not closely related (nastic) [SNSK08].

The two most commonly studied tropic movements are: 1)
phototropism, tendency of growth toward (e.g. shoots) or
away (e.g. roots) from light, and 2) gravitropism, tendency
of growth toward (e.g. roots) [BBA89], away (e.g. shoots), or
at some fixed angle to the direction of gravity [FD97]. Fig-
ure 2 shows sunflower stems undergoing a negative gravi-
response due to pot rotation (from [Han00]). As shown,
the pot of sunflower shoots was rotated and the shoots re-
sponded by bending upward. While a complete explanation
for growth movements is active biological research, we use
these as the basis for adding variation to plant models. The
most common nastic response can be described as oscilla-
tory movements during growth and can initiate tropic re-
sponses (e.g. climbing plants). There is ongoing debate over
whether these movements are caused by an internal mecha-
nism or the “over-shoot” of gravitropic responses [Joh97].
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Animation frames from Roger Hangarter [Han00] with permission.

Figure 2: Within one hour of pot displacement the sunflower shoots responded negatively (away) to gravity. Frames at 0, 40,
60, 90 and 120 min. after displacement.

2.2. Biological Models of Movement and Growth

The majority of gravitropic response research has been
with roots because of their quick response, relatively sim-
ple structure, and suitability for laboratory experimentation
[BPB94]. Observations and models in this area are summa-
rized here. Roots have a region of growth displaced from
the root cap or tip (see Figure 3(c)). Darwin [Dar80] con-
cluded that the root cap is necessary for gravitropic sensing
and determination of the root’s gravitropic response. Barlow
et. al. [BBA89] concluded that growth rates (RELELs - rela-
tive elemental rates of elongation) may differ around the root
within the growth region. They used RELELs to character-
ize the growth pattern over the organ, creating differential
growth and curvature.

Edited from [BBA89]

(a) (b) (c)

Figure 3: (a) Root tip bending. (Mu,Ml) = (2.0,1.0), (µu =
µl) = 3.0, σu = σl = 1, tip angles: t = (0.126,0.380,0.633),θ =
(18.1,54.5,90.8) (b) µ , σ alteration. (Mu,Ml) = (3.0,1.0),
(µu,µl) = (3.0,5.0), (σu,σl) = (0.7,1.0) (c) Illustration of root
and substance transport.

Barlow et al. [BBA89, ZBB97] model a plant root as a
constant-diameter d cylinder. They simulate a 2D longitudi-
nal slice of the root, constraining bending within the plane.
A RELEL is assumed for each point s at time t on the up-
per Lu and lower Ll flanks of the slice and is associated
with an angle of the tip to the vertical (displacement) θ at
some earlier time t ′. The time-lapse indicates lag between
the sensed displacement and the resulting response. Differ-
ential growth results from asymmetric RELELs. They used
a Gaussian distribution of RELELs = Mexp(−(x−µ)2/2σ2

where x is the distance from s to the tip, µ is the value of x
at the maximum M RELEL, and σ is the distance from µ

where RELEL = 0.607M. Differences in parameters cause
growth rate differences around the root at a given time.

The tip angle θ at any time is determined by the lengths of
Lu and Ll . Varying M while keeping σ and µ the same for Lu
and Ll alters the growth rate and flank length proportional to
M with proportionality constant α as follows:

θ =
Lu−Ll

d
=

α(Mu−Ml)
d

(1)

This achieves bending over time (see Figure 3a). Varying
σ independently on Lu and Ll results in curves of different
radii, and altering µ over time can form kinked shapes simi-
lar to corn roots [BBA89, p.79](see Figure 3b).

Barlow et al. [BBA89, p.79] suggest achieving more elabo-
rate curves through complex rearrangements of growth rates
(e.g. θ a function of other parameters like µ or asymmetric
RELEL distributions) or interactions of different tropisms.
Barlow et al. [BPB94] note two more results of interest to
our approach. First, the rate of bending is constant indepen-
dent of θ . Second, the relation of the lag (between sensor
and response) to the response, can cause bending to over-
shoot the target re-initiating an gravitropic response on the
other side to simulate the commencement of nutation. The
relation of the tip angle to overall shape and the observation
of the relation between lag and response forms the basis of
the structural approach described in Section 4.

3. Surface-based Variation

Our first approach to modelling variations simulates alter-
ations in surface growth rate of a root according to the
uneven distribution of a plant hormone called auxin. The
auxin concentration inhibits growth leading to bending.
The impact of differences in growth rate on resulting root
shape is comparable with how the distribution of Barlow’s
RELELs [BBA89] affects the resulting tip angle of a root.
This biological simulation is used to verify the results of our
skeletal based method presented in Section 4.

The assumptions we used to construct our model were taken
from [MTR∗04], and are briefly outlined below. Auxin is
transported through the root’s center toward the tip at some
constant rate. The auxin is then distributed at the tip by a
gravitropic mechanism, as a function of orientation of the
tip with respect to the gravity vector (angle θ see Figure 3a).
A larger fraction of the available auxin is redirected to the
side of the root tip that is oriented toward gravity. When the
direction of the tip and gravity match, auxin is equally dis-
tributed. Once the auxin is distributed at the tip, it is trans-
ported by a polar transport mechanism along the surface of
the root back toward the plant, as illustrated in Figure 3c.
Auxin modulates growth rates within the growth zone by in-
hibition. Uneven auxin concentrations cause uneven (differ-
ential) growth and consequent bending, a behavior consis-
tent with Barlow et al. models [BBA89, ZBB97]. Bending
continues until the tip is realigned with gravity and an even
distribution of auxin is restored.

Based on the above assumptions, we constructed the follow-
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Figure 4: (a-c) Simulation model of a gravitropic response in a developing root. (d) Various root shapes produced by the model.

ing two-dimensional simulation. We first discretize the root
into multiple segments and a single root tip segment, as il-
lustrated in Figure 4a. Each segment is associated with two
types of information, the level of auxin at its top and bottom
sides, and the segment’s shape. The segments are initially
rectangular, although they deform throughout the simula-
tion. The core of the simulation consists of the main loop,
where the development of the root is incrementally simu-
lated in time steps of ∆t.

Each iteration through the main loop consists of three steps.
First, we calculate the concentrations changes of auxin in
each segment in time ∆t. This amounts to simulating polar
transport oriented in the direction away from the root tip and
accounting for addition of new auxin at the root tip from
the root center and re-distributing it by the gravity sensing
mechanism.

In the second step, after the new values of auxin in each seg-
ment are calculated, we simulate the growth of each seg-
ment. The shape of each segment is changed by elongating
their top and bottom sides according to growth rate, similar
to RELELs [BBA89]. The growth rate of a particular side of
a segment is a function of two variables: the distance from
the root tip, and the concentration of auxin at the side of the
segment. The distance from the root tip determines the lo-
cation of the growth zone [BBA89]. The root grows faster
near the center of the growth zone and tapers off away from
the center. This preliminary rate is then modified according
to the level of auxin associated with the side of the segment.
The resulting growth rate is then applied to calculate the new
lengths of the sides of each segment and update the segment
shape, resulting in rhomboidal-shaped segments (Figure 4b).
To prevent segments from becoming too large, they are dy-
namically subdivided upon reaching a threshold size.

In the final step of the simulation loop, after the individ-
ual segment shapes have been computed, we assemble the
resulting root shape as illustrated in Figure 4c. This is ac-
complished by first fixing the last segment of the root to
some predefined location. The next adjacent segment is then
translated and rotated so that its left side matches the last

segment’s right side. This process is repeated iteratively un-
til the shape of the whole root is reconstructed. The root
bending is thus an emergent phenomenon in our simulations.
Various root shapes obtained using our 2D simulation are
shown in Figure 4d. These results were generated by vary-
ing some of the simulation parameters, such as the size and
location of the growth zone, the auxin transport rate, the in-
hibition effect of auxin on growth, etc.

We also extended our gravitropic simulation of roots to three
dimensions. We assume that the initial shape of the young
root is cone-like, which we discretize into cylindrical seg-
ments of equal heights. Each such segment’s surface is then
discretized into a polygonal mesh. As the auxin is trans-
ported through the segments’ surfaces, the mesh polygons
undergo growth. The result of uneven auxin distributions is
non-uniform growth, which manifests itself by transform-
ing the initial cylinder-like segments into more wedge-like
shapes. By iteratively assembling the segments, similar to
the process described for the 2D model, the 3D shape of the
root can be reconstructed.

4. Skeletal-based Variation

We model plant variations through changes in the struc-
ture or skeleton by abstracting the surface growth responses
shown in Section 3, and relating them to the plant skeleton
and changes in tip angle similar to Barlow’s work (see Sec-
tion 2.2). Starting from a base model skeletal representation,
variations are added by simulating growth responses to influ-
ences or stimuli (see Section 2). The skeleton is subdivided
into growth steps and at each step we monitor and respond
to the difference between the desired (base model) and cur-
rent growth directions. This mechanism is modelled using a
control system.

We use a base model’s skeleton to define the desired direc-
tion or natural course of growth. Then by subjecting this
skeleton to the same stimuli as real plants and compensat-
ing for the surface offset from the skeleton, we apply adjust-
ments directly to the skeletal representation. Once the mod-
ified skeleton is obtained, the surface is recreated and a new
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varied model which resembles the base model is generated
as shown in Figure 5.

Figure 5: Variation
of an initial “skinned”
skeleton occurs by al-
tering the skeleton and
“re-skinning”.

Using a base model for determining the desired course of
growth both parallels what may naturally occur and has ben-
efits to modelling. In nature, plants of a particular type typ-
ically have a common general direction of growth. We as-
sume this general direction is the desired course of growth
and the stimuli or influences trigger responses resulting
in variation. Simulating the stimuli/response mechanism to
maintain a desired course of growth for plant modelling
has a dual purpose: realism and control. Simulating biologi-
cal plant responses aid in creating more realistic variations.
Defining the desired course of growth from a base model
ensures a resemblance to the base model.

A closed-loop feedback control system is used to simulate
the response mechanism. The control system has a sensor,
a response and a lag between these components which all
parallel the growth mechanism described in Section 2.2.
This mechanism is used to maintain a resemblance to the
base model skeleton. The control factor is the relation of
the growth rate to the tip angle or displacement between the
current and desired course of growth similar to Barlow (see
Section 2.2). This displacement angle is computed at regu-
lar intervals and then depending on the growth rate, lag and
external influences, an adjustment to the current growth di-
rection is made to compensate for the influences.

4.1. Closed-loop Feedback Control Systems

Control systems [FPEN94] typically have an input, a sensor
which determines error, and a response mechanism which
compensates for error. Errors arise as differences e, between
the input data r and the sensed data, in the sensor v or from
an external disturbance w. The sensor measures differences
e between the input and the current sensed data, which in
our case are the desired and current growth directions re-
spectively. Figure 6 shows a typical closed-loop feedback
control system. D(s) is the transfer function to convert in-
put (r and e) to computed adjustment u at time s. G(s) is the
transfer function that takes the adjustment, u and (possibly
adds a disturbance - w) and generates a response. The sen-
sor then remeasures and computes the error, e and possibly
introduces error, v.

The transfer function D(s) computes an adjustment propor-
tional to the amount of error in the system at a given time.
This means the computed adjustment to the tip angle is pro-
portional to the displacement (angle) of the tip from the pre-
determined course of growth. So, D(s) = κθ , where θ is the
difference between the current growth direction and prede-
termined growth direction (see section 4.2) and κ is the pro-
portionality coefficient. While there are many types of con-
trollers [FPEN94] for reducing disturbances (influences) in a
system, we found using this proportional control is sufficient

Controller
D(s)

Output
(y)G(s)

Plant

Disturbance (w)

Sensor Noise (v)

E E

E

e u

Input
(r)
Reference

Figure 6: In a typical closed-loop feedback system the con-
troller D(s) transfers input (r and e) to an adjustment u. G(s)
responds to u (and disturbance, w). The sensor then recom-
putes error, e and may introduce error, v.

in most cases. Other types of controllers may be required
when adjustments for change in error (derivative) or accu-
mulation of error (integral) are needed (see Section 4.2.1).

4.2. Modelling Growth Responses to Influences

We model natural growth responses by assuming continu-
ous growth and using a control system to simulate plant re-
sponses. The input r to our control system is the skeleton of
the base model as described by an L-system. The sensor v
and external disturbance w errors represent stimuli or influ-
ences the plant responds to. The transfer function’s ability to
compensate for lag and error determine if the system is sta-
ble (i.e. error is bounded), convergent or divergent. Further-
more, our assumption of growth for movement means that
compensation for influences is dependent on growth and ul-
timately on the ratio of growth rate to error rate. Movements
which do not require growth can possibly be incorporated
into the model later, when more is known about their impact.

4.2.1. Modelling Responses

The growth process is simulated by dividing the plant devel-
opment into discrete growth steps. At each step the plant tip
senses how far displaced (in degrees) the tip is from the de-
sired direction of growth. Once this difference is measured,
the plant then determines how to alter growth rates to induce
a change in the orientation of the apex. This is simulated by
the controller computing a change in growth direction using
the transfer function D(s). A signal is then passed along the
stem where after some lag it arrives at the growth zone. This
is simulated by creating a signal at each growth step with a
lifetime and a corresponding adjustment or change in growth
direction. Once the signal expires, the response is activated
altering the skeleton reflecting the altered growth rates.

Figure 7 shows growth simulation by first subdividing the
segment into discrete growth steps. At each step the growth
direction difference is sensed, θ and an adjustment com-
puted. A signal Sn for the adjustment is generated with a life-
time (m) which decays and is transmitted to the growth zone.
As growth proceeds, the prior signals decay and new signals
are generated. In this example each signal has a lifetime of
two and the growth rate, signal transmission rate are equal,
and decay rate is constant. Thus, the plant grows upward as
fast as the signals travel downward and decay. Once the first
signal expires (at the far right) the skeleton is adjusted. For
simplicity, adjustment is the full difference (i.e. κ= 1). With
a constant growth rate the response always occurs the same
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Figure 7: At each step the growth direction difference, θ is
sensed and an adjustment computed. A signal Sn carries the
adjustment which is activated when the signal “expires”.

distance from tip. By altering the growth rate, transmission
rate, lifetime (i.e how long a signal lasts with constant de-
cay rate), or decay rate of various signals, the growth region
may migrate causing signals to convolve, requiring integral
or derivative control (see Section 4.1). In the examples re-
ported in this paper, growth occurs in the growth zone (near
the tip) only, however in plants growth also occurs as elonga-
tion of stems. This may be simulated by similarly elongating
each subdivided growth step and adjusting the signal decay
appropriately.

4.2.2. Modelling Stimuli or Influences

There are two types of possible influences that cause
variation: imperfect sensing and external or environmen-
tal stimuli. The plant senses how far (angle) the apex is
from the ideal predetermined direction or path of growth
by sensing both the current growth direction Hcurr and
the desired or target growth direction Htar. In reality
there are numerous factors (e.g. hydration, growth rate
etc.) that may cause imprecision in this measure. Due to

imperfect sensing, Hcurr may not accurately
represent the current growth direction. In our
model the sensor error is approximated by ran-
dom radial Gaussian distribution about Hcurr
as shown at left, creating the sensed growth di-
rection Hsense. The difference in growth direc-
tions is then determined by computing the an-

gular difference between two normalized vectors, Hsense and
Htar as: acos(Hsense ·Htar). The controller uses this differ-
ence to compute an adjustment (see Section 4.1).

While adjustment computation is exact using the defined
transfer function and the sensed difference, the plant may
react without knowledge of external stimuli. The external
stimuli represent environmental factors that may affect the
growth direction aside from those which define the pre-
determined course of growth. Since these factors (e.g. wind,
growth proximity etc.) are so numerous we model them in
two ways: randomly and functionally. The random model
represents the statistical averaging of numerous seemingly
random factors resulting in a random influence with a Gaus-
sian or uniform distribution. Alternatively, to explore how
a specific, possibly dominant, stimulus affects the growth
direction, a function can be specified which represents this
stimulus or overall target growth direction. Figure 8 shows
two examples of user specified target (left bottom) and dis-
turbance functions (left top). These functions are applied
with the target function in one orthogonal plane (middle) to
define overall shape and the disturbance in a second orthog-
onal plane to show local variation (right). A more integrated

Disturb.

Target

Disturb.

Target

Figure 8: Two examples of user specified functions (left)
applied orthogonally (right).

example of the use of target function specification is shown
in Figure 13 and is detailed in Section 5.

The difference between imperfect sensing and external stim-
uli is, the former is directly compensated for by the con-
troller, while external stimuli are only compensated at the
next stage of sensing and correction (see Figure 6). Conse-
quently, imperfect sensing impacts variation less.

4.3. The Process and Form

In addition to growth and error rate affecting form, the lag
between the determination and activation of a response, as
noted by Barlow et. al [BPB94] also affects form. In real
plants the relation between lag and growth rate is not clear.
In our model it is a ratio between the lag and the ability to ad-
just (i.e. size of adjustment κ see Section 4.1) that impacts
form the most. This ratio represents the plant response to
stimuli and will be called the compensation ratio. The mag-
nitude of the lag reflects the rate of response. The magnitude
of the adjustment, determined by transfer function D(s), re-
flects the number of adjustments required to compensate for
an influence. No adjustment can be made without a response
first signaling an adjustment, coupling these parameters into
the compensation ratio. To provide an intuition and relation
to the feedback control mechanism with a single initial dis-
turbance, error E(n) (i.e. θ ) at growth stage n, obeys the re-
currence relation: E(n) = E(n−1)−κE(n−1− lag), where
D(s) = κθ . The compensation ratio, (κ ∗ lag)−1 ≈ 0.7 has
been experimentally determined to represent a stable system
and is discussed below.

Consider a single initial influence on a plant, whose desired
course of growth is straight upward (either toward a point
light or away from gravity). The single influence simulates
a change relative to gravity direction by displacing the plant
90◦ shortly after growth is commenced, similar to the sun-

Figure 9: Varying lag and adjustment ability. At 20% of
shown growth a 90◦ rotation occurred. Compensation ratio
= 0.72, lag decreasing left to right. Compare with Figure 2.
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flower animation in Figure 2. Figure 9 shows our model of
a plant reacting to being turned 90◦ at 20% of total shown
growth. Varying amounts of lag and adjustment ability are
used, however, all compensation ratios are fixed at 0.72. As
the lag magnitude decreases from left to right, the plant ad-
justs to the stimuli more quickly. Note the small amount of
oscillation before convergence to the pre-determined course
in the two rightmost plants due to the significant “over-
shoot” of the target.

The two parameters for controlling variation given a base
skeleton, are the lag and the adjustment ability κ , which to-
gether form the compensation ratio. As shown in Figure 9
maintaining a constant compensation ratio and altering lag
magnitude (i.e. altering κ proportionally to lag) introduces
variation at different levels of detail. The plant on the far
right has variation of a much higher frequency than the plant
on the far left. The overall plant shape is controlled using
the base skeleton model and as shown all plants achieve
a general upward course of growth despite being turned
90◦. Altering the compensation ratio (i.e. changing lag dis-
proportionally to κ) can alter the change in variation over
growth as shown below. A compensation ratio from 0.5 to
1.2 effectively alters variation. The sensitivity of variation to
lag magnitude depends on the number of subdivided growth
steps used. All examples in this paper had lag ∈ [4%−30%]
of the number of subdivided growth steps.

As the compensation ratio is altered, the plant either com-
pensates equally for the stimulus, under-compensates or
overcompensates. If the plant equally compensates for the
stimulus given the lag, then regular oscillation may occur.
The lag is long enough, relative to the adjustment and stim-
uli magnitude, such that the adjustments regularly overshoot
the target by a constant amount causing oscillation. How-
ever, if the plant under-compensates or overcompensates ei-
ther a divergent or convergent form results, meaning that the
plant either overshot the target by a increasing or decreasing
amount respectively as shown in Figure 10. The plants were
rotated 20◦ at the start of growth. The group of stalks on
the left have shorter lag than those on the right. Within each
group the compensation ratio is increased from left to right
to exhibit under-compensation, equal and overcompensation
of the stimuli, respectively.

Figure 10: Two groups of differing lag and adjustment abil-
ities. Left: smaller lag Right: larger lag. In each group the
adjustment ability is under-compensated (left), equal (cen-
ter) and over-compensated (right).

4.4. Implementation and L-system Details

The skeleton is sequentially varied proceeding from the root
to the tip by adding variation to each subdivided skeletal
segment (see Section 4.2.1). Assuming the existence of a
method STRAIGHSKEL() for creating a straight skeletal seg-
ment of length l, we devised an algorithm to create a varied
skeletal segment of the same length as shown below.
CREATEVARIEDSKEL(l)
1 currlen← 0
2 while currlen 6= l
3 do Get Hsense and Htar // Sensor measure with error
4 e← GETERROR(Hsense,Htar)
5 t← GETSIGNALLIFETIME()
6 U ← COMPADJ(e) // Controller D(s) & influence
7 ADJUST(t,U ) // Signal a response
8 STRAIGHTSKEL(δ l) // Continuous growth
9 currlen← currlen+δ l

ADJUST(t,U )
1 if signal t has expired
2 then Plant G(s) activates adjust. of segment by U
3 else δ t← ELAPSEDAGE() // Decay & pass signal
4 ADJUST(t−δ t,U )

In our algorithm, small segments δ l are altered in orienta-
tion to create variation over length l. Note that segment ad-
dition or growth is continuous and an adjustment is made
each time a subsegment δ l is added. However, the growth
rate can be varied by altering δ l over time. In relation to the
control system in Figure 6, at each growth step the sensor
detects the current and target growth directions (line 3) and
measures the error (line 4). The controller then computes an
adjustment in orientation (line 6) and creates a response sig-
nal with lifetime t (lines 5 and 7). This process is repeated
until the length l is achieved.

While our algorithm is general enough to introduce variation
to any skeletal model defining Htar, we have chosen to use
an L-system as the base model’s skeleton and consequently
implement the algorithm as an L-system. The details needed
to convert most L-system plant descriptions to one which
introduces variation is given in the appendix.

5. Results

Once the L-system is modified, the varied skeleton is gen-
erated in seconds on a 800MHz PIII with a GeForce FX
graphics card. The development of the variation is, of course,
directly dependent on the number of subsegments used. Fig-
ure 11 shows the base Lily model (left) and a varied model
(right). This model has a compensation ratio of ≈ 0.7 and
large lag shown by the stem, branch and leaf curvature.

Figure 12 shows a model of Horneophyton with constant
compensation ratio and differing amounts of lag and influ-
ences. An illustration and base model (L-system) are shown
in (a) and (b). A constant compensation ratio is maintained,
but altering lag results in variation of different frequencies
(compare group d with e) and altering the magnitude of
the influence or stimuli alters the magnitude of the varia-
tion (compare within group d or e). A model with stochas-
tic branch angle variation by ±17.5◦ degrees is shown in
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Figure 11: Right: Variations of Lily model at Left

(a) (b) (c)

(d) small lag

(e) large lag

Figure 12: (a) Illustration modified from Eggert (1974) (b)
original model (c) random branch angles by ±17.5◦ maxi-
mum. (d) & (e) slight overcompensation with increasing ran-
dom external disturbance to right (d) small lag (e) large lag

(c). Note how the models in group (d) and (e) preserve the
branch shape shown in (a) better than in (c).

Figure 13 shows alteration of the compensation ratio. A base
plant model is shown on the left with three varied models
on the right. The compensation ratio increases from left to
right and thus the models show less divergence from the
base model and lower frequency variation to the right. This
model stochastically determines the location and number
of branches, hence the differences in this regard. Finally,
a dominate phototropic influence causes change in the de-
sired growth direction along each branch from initially out-
ward to upward. The desired growth direction is a weighting
(similar to [AK84, PL90]) between an initial outward direc-
tion and upward influence using the functional specification
described in Section 4.2.2. The result is all branches in all
models generally bend upward, but due to other influences
and lag in the adjustment each branch is slightly different.

Figure 14 shows two examples of our method used to
quickly generate a collection of similar naturally varied palm
trees. One base model of a palm tree was used as shown
on the top, a real photograph on the left and the simulated
models on the right. All plant models in each scene have
the same variation parameters for simplicity. Note the corre-
lated variation along the entire length of the stems. Once the
base model and the location and scale of the plants were de-
termined, these scenes were generated in minutes. The three
palm trees in the center of the bottom images were purposely
tilted by changing the desired growth direction.

By altering lag, compensation ratio and influences this
method creates a range of frequency and magnitude varia-
tions of a base model comparable to natural plant variations.
This technique is shown to be useful in creating natural col-
lections of similar models quickly and effortlessly.

6. Conclusions

We showed that by coarsely simulating the growth response
of plants to stimuli, we are able to approximate natural plant
variation. Alterations were applied directly to the skeletal
representation of a base model. A control system was used
to closely simulate the natural growth process which ensured
natural looking variation of a base model. The amount of
variation and level of detail were controlled by maintaining
a resemblance to the desired base model. Our technique cor-
relates local variation with global shape to create variation
along entire lengths of stems, branches and leaves. This no-
tion of control and representation of natural variation cannot
be achieved with previous instancing and stochastic tech-
niques. While our method does involve the use of random-
ness to approximate the combined affect of many influences,
the random function does not directly define the resulting
variation in form. It is rather the simulated growth response
to these random influences which define the resulting form.
We showed that our technique can be used to quickly and
efficiently generate numerous models of the same kind of
plant in which each plant looks similar, but is not the same.
As shown these varied models can be arranged to create a
“natural-looking” collection of similar plants.
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Appendix A: L-system Implementation Details

The base skeleton generally defines the desired course of
growth and is described by a base plant’s L-system. The
L-system is a set of rules which define the plants construc-
tion [PL90]. Implementing our algorithm as part of an L-
system requires a few details. The variation is added as the
L-system is evaluated requiring two events at each eval-
uation stage: update of relative transformation matrix, TM
and temporary halting of evaluation of the L-system while

Original L-system Modified L-system

A()→ A()→
+ \ F(k) ^ + F(l) M() + \ CVS(k,TM) ^ + CVS(l,TM)

group 1:
M() < CVS(k,TM)

state = 2; numbranches++;
produce . . . Variation(k,0,TM) . . . }

group 2:
Variation(k,nl,TM):{

Htar ∗TM . . .
if (nl < k)

produce . . . Variation(k, nl++,TM);
else

numbranches--;
if (numbranches == 0)

state = 1; produce M();

Table 1: Transition from original L-system description to
modified L-system creating variation [KL02].

a straight line production becomes a series of small subseg-
ments altering orientation and introducing variation as out-
lined. As mentioned some branches grow at a particular an-
gle to either gravity or the main stem. This desired growth
direction is simulated by either a globally or locally accu-
mulated transformation matrix, TM . TM transforms the de-
sired growth direction to either a global (relative to grav-
ity) or a local (relative to the parent stem) direction. Halt-
ing the L-system is required since variation and start loca-
tion/orientation of one segment is dependent on the previous.
Introducing variation sequentially in this manner ensures
variation continuity along the length of a branch or stem and
preserves discontinuities of the original base model.

L-systems, are inherently non-sequential and thus three
mechanisms were used to ensure sequential evaluation: Ta-
ble L-systems, context sensitivity and a semaphore. Table L-
systems associate a state with each rule or production and as
evaluation occurs only those rules in the current global state
are considered. Altering the state allows us to halt the orig-
inal L-system and add variation. A marker M() provides a
context to be satisfied to ensure evaluation of only one seg-
ment of a single branch at a time and also to prevent eval-
uation of child branches before their parents to which they
are attached. The marker is initially placed at the beginning
of the main axiom and migrates down the L-system string as
evaluation occurs and variation is added. When variation of
one segment is complete, the marker is replaced adding a sat-
isfying context to the next segment. Since multiple branches
can develop at once, parallel evaluation of branches is per-
mitted. However, using a global state to maintain sequencing
of variation causes problems. Thus, a counting semaphore
numbranches prevents state changes until all branches have
completed variation of their current segment.

Changing a base L-system to introduce variation is fairly
generic (see Table 1). Given a set of turtle transformations
(i.e +,\,^) and turtle translations (i.e. F(l)), from a de-
composed L-system two productions with different states
are added: CVS which Creates a Varied Segment and Vari-
ation. As shown, these productions change the state, update
the semaphore and add the context M() as outlined above.
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