Visual Comput (2008) 24: 689-698
DOI 10.1007/s00371-008-0249-5

Hung-Li Jason Chen
Faramarz F. Samavati
Mario Costa Sousa

Published online: 29 May 2008
© Springer-Verlag 2008

Electronic supplementary material

The online version of this article
(doi:10.1007/s00371-008-0249-5) contains
supplementary material, which is available
to authorized users.

ORIGINAL ARTICLE

GPU-based point radiation for interactive
volume sculpting and segmentation

Abstract Internal structures, fea-
tures, and properties in volumetric
datasets are mostly obscured and
hidden. In order to reveal and explore
them, appropriate tools are required
to remove and carve the occluding
materials and isolate and extract
different regions of interest. We
introduce a framework of interactive
tools for real-time volume sculpting
and segmentation. We utilize a GPU-

process. We use the same point
radiation technique to create high-
quality real-time feedback of the
segmented regions during the seed
growing process. We present results
obtained from raw and segmented
medical volume datasets.

Keywords Point-based techniques -
Real-time system - Volume
segmentation - Volume cutting

based point radiation technique as
a fundamental building block to
create a collection of high-quality
volume manipulation tools for dir-
ect drilling, lasering, peeling, and
cutting/pasting. In addition, we

H.-L.J. Chen (<) - EF. Samavati -
M.C. Sousa

Department of Computer Science,
University of Calgary,

2500 University Drive, N.W.,
Calgary, Alberta, Canada, T2N 1N4
hljason.chen@ucalgary.ca

1 Introduction

In medical imaging, clinicians and surgeons often use
computer-aided techniques to identify and analyze ana-
tomical structures of interest. Many techniques were de-
veloped in particular for segmentation (see the survey by
Pham et al. [12]). Sherbondy et al. [15] proposed to navi-
gate from 2D images to place a seed point. This point is
used for a seeded region growing algorithm for determin-
ing the area of interest. This kind of technique has three
major issues to be addressed: how to navigate, how to
plant the seeds, and how to control the growing thresh-
old. Current medical volume datasets contain hundreds of

enable interactive parallel region
growing segmentation that allows
multiple seed planting by direct
sketching on different volumetric
regions with segmentation results
dynamically modified during the

slices and require domain expertise for understanding the
cross-sectional representation. An ideal segmentation en-
vironment would simulate physical tools allowing users
to directly operate on 3D datasets and carve them. The
second issue is how to plant the seeds. Due to the noise
in the medical image acquisition process, materials with
similar intensity values are sometime disconnected, result-
ing in an incomplete segmentation of the entire organ. It
would be beneficial to perform region growing on a group
of the seeds in a parallel fashion. The third issue is how to
control the region growing algorithm. Using static thresh-
olding methods is not an ideal solution since different ma-
terials in the datasets can have very close intensity values.

690 H.-L.J. Chen et al.

Fig. la—e. Key processes of our interactive volume manipulation framework: a a user indicates a region for opening with a stroke,
b a surface-based peeling operation is performed with user-specified depth, ¢ the skull layer is removed and the user sketches seeds for
segmentation, d the region grows, and e the grey and white matter are segmented and isolated

This is an issue and requires a trial and error process for
tweaking the thresholds. Addressing all of these issues, in
addition to real-time feedback and high-quality rendering,
makes the problem even more challenging.

We present a framework of interactive tools for real-
time volume manipulation and segmentation (Fig. 1). As
a new contribution, we introduce a GPU-based point ra-
diation technique as a fundamental building block for
high-quality volume carving (Sect. 3). The point’s radia-
tion is used to create smooth anti-aliased results as well as
a collection of interactive raycasting based tools for dir-
ect drilling, lasering, peeling, and cutting/pasting the 3D
volume (Sect. 4). In addition, we enable interactive region
growing segmentation and allow multiple seed planting
by direct sketching on different regions (Sect. 5). To ob-
tain rapid feedback, we introduce a new parallel region
growing technique that concurrently operates on all the
sketched seeds. As a novel feature of this technique, seg-
mentation results are allowed to be dynamically modified
through a series of undo, redo, and resume operations.
In our approach, seeds are processed as points using the
programmable hardware. We maintain multiple seeds by
storing their state information in a separate 3D buffer.
Again, we utilize point radiation to create an anti-aliased
seed map and render the region growing result with high-
quality raycasting.

2 Related work

Our framework (Fig. 1) is based on components related to
volume clipping, volume sculpting, and volume segmenta-
tion with seeded region growing.

Volume clipping. Volume clipping provides a means to
expose parts of the volume with cutting planes or more
complicated geometry. Weiskopf et al. [20] proposed in-
teractive clipping techniques that exploit the graphics
hardware. They presented depth-based clipping, using the
depth structure of an object, as well as clipping via a vox-
elized clip object, utilizing 3D textures and distance fields.

McGuffin et al. [10] presented a method for browsing the
volume with interactive manipulation widgets by assign-
ing individual voxels as the fundamental primitive. Huff
et al. [8] exploited programmable hardware and proposed
erasing, digging, and clipping operations to uncover hid-
den structures in the volume data. Recently, Correa et
al. [5] proposed a set of operators (peeler, retractors, pli-
ers, and dilators) that can be placed anywhere on or within
the volume. However, these approaches require either
preconstructed clipping objects or procedurally defined
operators. And, for most of the hardware-based clipping
methods, the algorithm is computed in the context of 3D
texture rendering and hence requires every voxel to be pro-
cessed every frame. In our point-based approach, voxels
are clipped and processed only if they are affected by the
points emitted by the tool.

Volume sculpting. This refers to a modeling technique
for sculpting a solid material with a tool, which modi-
fies values in the voxel array. Sculpting tools are used
to add, remove, paint, and smooth material. Galyean and
Hughes [7] adapted a 3D device to sculpt a block of ma-
terial bit-by-bit with the additive tool, heat gun, and sand-
paper. Avila and Sobierajski [1] incorporated a 3D haptic
device to simulate virtual sculpting tools by applying 3D
filters on the properties of the volume data. Ferley et al. [6]
presented a sculpting metaphor for rapid shape prototyp-
ing with 3D input devices. In general, sculpting with a 3D
device can be a challenging task as parts of the volume
can be occluding the tool itself. Moreover, it can be diffi-
cult to visualize the 3D location of the virtual tool relative
to the target volume. Wang and Kaufman [18] proposed
a carving and sawing tool utilizing a 3D splatting method
with a hyper-cone filter. Their approach is primarily in the
context of solid modeling.

Volume segmentation. Well-known segmentation tech-
niques such as thresholding, k-means clustering, water-
shed segmentation, and level-set methods have been ap-
plied in segmenting volume datasets. Tzeng et al. [17]
proposed an intuitive user interface for specifying high-
dimensional classification functions by painting directly

GPU-based point radiation for interactive volume sculpting and segmentation

691

on sample slices of the volume. Owada et al. [11] de-
veloped a volume catcher system in which the user traces
the contour of the target region by drawing a 2D free-
form stroke over the displayed volume. The seeded region
growing method has also been explored for segmenting
volumes [9]. Sherbondy et al. [15] developed a volume
segmentation system that allows the user to paint seeds by
drawing on the sectional views of the volume. However,
selecting from hundreds of slices and pinpointing the cor-
rect location on the 2D image require both highly trained
personnel and time commitment. Chen et al. [3] presented
a 3D seeded region segmentation system with splatting
rendering. They allowed volume cropping with a sketch-
based interface and enabled seed searching directly on
the 3D surface. The drawback in their seed selecting ap-
proach is that only one seed can be explored at a time and
the region growing has to be computed off-line. Recent
approaches exploited programmable hardware for accel-
erating the region growing algorithm [14, 15]. Their seed
growing computation requires rendering to sections of
a 3D texture and must iterate through all layers of the vol-
ume to complete a single growing step. In our point-based
approach, we grow seeds based on the currently active
voxels that consist of only a small percentage compared to
iterating through the entire volume every frame (e.g. 100
vs. 512° computation cycles), achieving a dramatic per-
formance improvement with local updates. In addition, we
have found that processing multiple seeds from the input
sketch in parallel fashion and having the feature for dy-
namically modifying the threshold are very crucial in the
medical datasets. These features are exclusively supported
in our real-time and point-based segmentation method.

3 GPU-based point radiation

We propose a set of real-time volume manipulation tools
(Sect. 4) all based on the fundamental concept of point ra-
diation. The main idea is to create a set of 3D points (from
the proposed tools) associated with the existing voxels.
Based on the tool, the intensity values of the correspond-
ing places in the dataset are changed (e.g. by removing the
material). The binary use of points creates aliasing arti-
facts. To address this issue, we assume that each point
has a continuous field of energy (radiation) that drops
smoothly off to zero. Obviously, taking the radiation into
consideration increases intensively the computational load
for an interactive application. We address this by taking
advantage of the programmable graphics hardware. This
achieves a dramatic performance gain with a minimum
factor of 128 on a GeForce 8800 and 320 on an ATI
Radeon 3800. In fact, point radiation extends naturally
from a hardware-supported function — point sprite. Point
sprite is a two-dimensional billboard method for render-
ing a textured image from a single point in space, whereas

point radiation establishes a three-dimensional metaphor
for rendering a filtered volume from a point sample. The
basic idea of point radiation is also close to the concept of
2D splatting, which was first described by Westover [21]
as a footprint evaluation for object-order volume render-
ing. The splatting scheme allows every input sample to be
treated individually and therefore it is suitable for paral-
lel execution. Our point radiation method, as an energy
distribution process, produces a three-dimensional foot-
print. Finally, the concept of point radiation is also simi-
lar to the field function of a point’s primitive in implicit
modeling [2]. In implicit modeling, various primitive vol-
umes are used and then are blended with a tree-like struc-
ture [23]. In our approach, we do not rely on implicit
functions and sorting hierarchical blending operators. We
only work with point primitives and directly operate on
volumetric datasets. Therefore, our approach falls into the
category of point-based modeling and rendering.

3.1 Point radiation methodology

For the input 3D point p = (x, y, z), we use a Gaussian
distribution function for spreading energy radially into the
volume space around p. The Gaussian function smooths
neighborhood elements and provides high-quality anti-
aliased rendering. The kernel of the Gaussian function is
defined by a radius R, in terms of number of voxels. The
2R X 2R x 2R region forms a 3D footprint in the volume
space. To compute the weight w at a particular voxel v of
the footprint, we only need to apply a 3D Gaussian func-
tion: w = Gaussian3D(v). In this work, we use a simple
summation to accumulate the energy contributions from
all input points.

For implementing the point radiation technique, we
utilize the geometry shader and its ability to render to 3D
textures [16]. The geometry shader allows point primi-
tives to be amplified and redirected to any location in the
3D output texture. One possibility is to use these features
for creating and evaluating the 3D footprint of the input
point and blend it with the output volume. However, if we
directly instruct the geometry shader to generate the set
of all footprint points, the geometry shader may become
overloaded. To reduce the number of points processed by
the hardware, we utilize the point sprite hardware accel-
eration function, which is commonly used in most splat-
ting techniques to achieve real-time rendering. It allows
a point to be rasterized into a square region consisting
of fragments containing relative coordinates with respect
to the input point (e.g. fragment at the lower-right corner
has coordinates (1, 1)). To reconstruct the set of 3D foot-
print voxels, we use a stack of 2D point sprites (Fig. 2) to
largely reduce loads on the geometry shader.

To compute the energy at a footprint voxel, we need
to sample the 3D Gaussian function. Theoretically, we
could directly sample this function by evaluating it at a 3D
coordinate. But this requires us to store a 3D texture in

692 H.-L.J. Chen et al.

L :[Pyl
; (1,1)

Points Point Sprites 3D Footprint Voxels

Fig. 2. Points are emitted as 2D point sprites by a single geometry
program and reconstructed into 3D footprint voxels. Each 2D point
sprite contains automatically generated texture coordinates ranging
from (0, 0) to (1, 1)

the GPU memory to represent the Gaussian kernel. When
composing a high-resolution sampling, a large amount of
memory has to be allocated for storing the 3D texture. We
use the fact that the 3D Gaussian function can be evaluated
by multiplying 2D and 1D Gaussian functions as follows:

Jx, y) f(2)
) (x —x0)2 + (y — y0)? (z—20)?
B A =
=a’exp (— (x—x0)*+ (y—y0)* +(z— Z0)2>
2b2
= f(x,y,2),

where a > 0 and b are the parameters of the Gaussian
function and (xg, yo, zo) is its center. This scheme re-
duces memory consumption since we only need to store
a 2D texture and a 1D texture in the GPU. Then, the
Gaussian functions are reconstructed using programmable
graphics hardware. To begin the radiation process, the
geometry shader receives the position and attributes of an
input point p fetched via the vertex shader. Next, we com-
pute the point radiation by first transforming the position
of p into a screen coordinate to prepare it for rasteriza-
tion. Then, we compute the first layer of the 3D footprint
with a viewport transformation scheme using the equa-
tion layer 0 = round(p,/¢) — R, where p; is a normalized
depth value of p and ¢ is the depth of the voxel dimen-
sions. Next, we iterate from layer(O to layer2R — 1 and
duplicate a point primitive for each layer to reconstruct the
3D footprint. Each point should be associated with two
attributes: (1) the ZWeight sampled from the 1D Gaus-
sian texture computed from the normalized layer coordi-
nate and (2) the sample value s of point p (e.g. intensity
value). After the rasterization step, the set of points emit-
ted by the geometry shader are converted into 2D point
sprite fragments. In the fragment shader, we look up the
2D Gaussian texture with the 2D point sprite coordinate
and combine the result with ZWeight to form a 3D energy
value w corresponding to a 3D footprint location. The final

fragment value is then combined with the sample value s
and blended into the radiation volume!.

4 Interactive volume tools

Based on the point radiation technique, we develop novel
tools for sculpting volumes and removing occluding ma-
terials. We were inspired by traditional medical illustra-
tions depicting clinical procedures using physical oper-
ations like drilling and peeling. In our system, the user
specifies a closed-curve region directly over the volume to
define the tip shape of the sculpting tool or the volumetric
region of interest for uncovering. This closed-curve region
is then used to construct a computational mask in which
each element can penetrate/cut through the volume using
a local geometric property such as normal directions on
the volume surface.

4.1 Mask generation

The first step is to generate a binary computational mask,
where 1 indicates that the pixels are contained in the
sketched area and O otherwise. Therefore, a closed curve
is necessary to divide the area to inside and outside. This
closed curve can be defined in two ways (1) as sim-
ple shapes (circles, squares, etc.) approximating specific
sculpting tools or surgical medical devices or (2) as closed
curves freely sketched by the user approximating surgical
cuts, for instance. We create the freely sketched curve by
enclosing the piecewise-linear curve strokes created from
the input points. Sketching a fine curve on the screen re-
quires fast processing of the stylus input when complex
rendering is involved. Since rendering the volume data is
a costly operation, simultaneously sketching and render-
ing the volume is deemed to degrade the curve quality.
In order to obtain smooth sketching, we freeze the back-
ground rendering (i.e. the volume raycasting) by saving
the entire scene to a texture. Thus, when the user places
strokes on the screen, we render the screen-sized texture
first followed by the input strokes. This avoids delays
caused by the concurrent rendering of both the sketch and
the volume data. To generate the mask, we fill the en-
closing sketch area using the stencil buffer with a 1-bit
color [22]. Then, we save the content of the stencil buffer
as a texture.

Direct use of a binary mask for sculpting or remov-
ing material from the volume can introduce aliasing ef-
fects. To avoid aliasing in the image space, we modify
the mask generation process and perform a post-filtering
step. Instead of using a mask with a binary format, we
use floating points to represent intermediate values be-
tween areas covered by the sketch and outside the sketch.

! For blending, we use glBlendFunc(GL_SRC_ALPHA, GL_ONE) to per-
form the accumulation.

GPU-based point radiation for interactive volume sculpting and segmentation

693

This method produces a smooth blending on the bound-
ary of the sketched region and further prevents aliasing in
the volume space. In the post-filtering process, we adapt
stochastic sampling and apply jittering on a regular grid.
Jittering is a method that trades aliases with noise [4],
where new pixel positions are sampled within a sub-pixel
(i.e. grid cell) — the final color is then reconstructed with
some scheme. Here, we choose the cubic B-spline recon-
struction filter as it provides smooth results while main-
taining sharpness and details [19].

4.2 Drilling

We propose a drilling tool that allows the user to carve into
the volume by sweeping a mask along the viewing direc-
tion. The mask represents the shape of the drill’s tip that
can be a circle, ellipse, square, or any other shape sketched
by the user. We match the drilling mask to the view plane.
This, in addition to the use of the viewing direction, is
a natural selection and helps to reduce the user interven-
tions.

Upon receiving a pressure change (from a stylus) or
slight movement, we find the surface points by casting

Point Radiation

rays from the mask plane into the volume space (Fig. 3a).
To perform drilling, we attach the mask elements to the
surface points and execute individual point radiation op-
erations. We repeat this process according to the depth of
drilling: depth = depth,,,, x pressure,, where depth,,, is
a maximum drilling depth allowance for each surface de-
tection operation; pressure, is the instantaneous pressure
normalized to [0, 1], supplied either by a stylus or from
a second input source; and depth is an integer defining the
succession for the mask radiation process. Based on our
experiment, setting the depth,,, value to the range of 8 to
12 is suitable for a volume of size 256°. Having a max-
imum drilling depth of 12 prevents excessive removal of
volume materials for every stylus input and helps maintain
stylus responsiveness. Successive mask operations offset
the positions of the mask elements with a small amount
(i.e. relative to the size of a voxel) along the view direc-
tion.

4.3 Lasering

To enable more flexibility, we also propose another carv-
ing tool which is slightly different from the drilling tool

Fig. 3. a Drilling the super-brain data with a square mask, raycasting into the volume to find surface points, and executing point radiation
along the view direction. b Applying multiple pressures to cut through the skull

Mask Point

Plane Radiation

Volume

Fig. 4. a Lasering the super-brain data with a circular mask, raycasting into the volume to find surface position and normal, and executing
point radiation parallel to the mask. b Moving and applying various pressures to remove the skull layer

694 H.-L.J. Chen et al.

and can simulate a 3D laser wand. In this tool, we sweep
the mask along the normal of the visible surface. And, the
laser mask (the tool’s tip) is orthogonal to the gradient
of the visible surface. As the mask moves, we find a sur-
face point by casting a single ray from the center of the
mask into the volume space. The geometric information
on this point, surface position and normal, is then used
for relocating and orienting the mask in 3D. When pres-
sure is applied on the mask, we execute point radiation by
emitting points parallel to the oriented mask (Fig. 4a). The
depth of lasering is computed similar to the drilling tool
with the amount of input pressure applied from a stylus.
By setting the maximum depth value to the range of 18 to
22, it works well for a volume of size 256> and prevents
the laser operation from removing excessive surface layers
(Fig. 4b). To minimize the user input, in our final imple-
mentation, we have not given flexibility for changing the
sweeping direction, although our framework is capable of
this feature.

4.4 Peeling, cutting, and pasting

To facilitate removing a large surface region at once (e.g.
opening the skull), we propose a peeling tool.

The peeling operation can be seen as wrapping a sur-
face region sketched by user into a mask. To create the
impression of peeling, each point of the mask, associated
with a point on the visible surface, should move along the
normal of the surface at that point. Therefore, for the peel-
ing tool we have a variable sweeping direction as opposed
to the drilling or lasering tool’s constant direction. Con-
sequently, the condition of mask peeling holds only if the
target surface contains a smooth change of gradients. To
precisely control the peeling layers, the peeling operation
is performed by adjusting a slider or dragging a pen on the
tablet instead of applying pressures. After composing the
peeling mask, we cast parallel rays from the mask plane
into the volume space to find the individual surface pos-

Mask Point Radiation

/]

Plane

ition and normal direction for each element on the mask
(Fig. 5a). To perform the peeling operation, we relocate
the mask elements to the detected surface points and emit
independent point radiation along the inverse normal as
the cutting path.

To simultaneously indicate the sculpted portion, we
introduce the cut and paste tool that allows the region
cut by the peeling tool to be pasted back with a different
position and orientation in the scene (Fig. 5b) through an
additional rendering criterion. In a cut scene, voxels with
associated radiation values (i.e. sampled from the radia-
tion volume) less than 0.5 are rendered. In a paste scene,
the visibility criterion is reversed (i.e. those with radiation
values greater than or equal to 0.5 are rendered instead).
To simultaneously display the cut and paste scenes, we
perform dual rendering with our GPU-based raycasting
engine. As the radiation values range from O to 1.0, we se-
lect 0.5 as a natural candidate for distinguishing the cut
and paste rendering.

5 Interactive seeded region segmentation

Segmentation is often broken down into edge-based or
region-based methods. Each of these in turn may be
manual or computer assisted (including completely auto-
matic). Among the edge-based category, a typical manual
segmentation process requires a trained specialist to draw
contours around the region of interest (ROI) on cross-
sectional images. These contour lines are then linked and
reconstructed into a 3D representation for further analysis.
This procedure can become a challenging task if the tar-
get is, for example, blood vessels in the brain, which by
nature involves complex shapes with many components
with unpredicted turning directions. In the seeded region
growing algorithm [13], we start from the selected seed
point (the parent seed) as the current voxel and move to
adjacent voxels (the child seeds) with feature values (such

T

Volume

T L

—*Z Normals

y
2l . x
b

Fig. 5. a Peeling the skull with a free-form mask, parallel raycasting into the volume to find separate surface position and normal, and
executing point radiation along the detected inverse normal directions. b Removing surface layers and pasting back the skull with a second

rendering pass

GPU-based point radiation for interactive volume sculpting and segmentation

695

(1) Source . Writeﬂ' ,u,Read) Destinatio.n Point
Seed Collectlon Multi-pass .Seed Collect!on Radiation |
e |0 l0e = GPU =l | s [o]e]e]| /= (4)
Processing) o
Segmentation
Sketch Seeds ——> Master Seeds Map
ParentSeeds — Grow Region —> Child Seeds B
Child Seeds ——> Shrink Region ——> ParentSeeds
Rendering

Suspended Seeds —> Recover Seeds ——> Reinstated Seeds

Fig. 6. Overview of our GPU-based segmentation framework. The processing initiates from the source seed collection (1), enters the pro-
cessing unit, exchanges seed growing information with the seed volume (2), and outputs the result in the destination seed collection (3).
The result is point radiated into the segmentation volume (4) for smooth rendering. The entire process is repeated (5) by swapping the

source and destination seed collections

as intensity or gradient magnitude) close to the values in
the current voxel. Standard CPU implementation of this
method (e.g. breath first search) requires storing the seeds
in a queue with sequential processing of the neighbors
(adjacent voxels). For a 5123 volume, this amounts to
805 million iterations every frame. In the context of high-
quality rendering with raycasting, the segmentation result
(i.e. a volume) also needs to be transferred from CPU
to GPU (per frame), further impeding interactive control
of segmentation. Recent advancement of programmable
hardware brings the potential of accelerating the region
growing process. However, the architecture of parallel
memory access on the GPU makes it hard to parallelize
the seed growing process, which requires a single seed to
finish with its exploration operations before another seed
can proceed. We address this issue and provide a solu-
tion to plant and progress seeds entirely under a parallel
execution environment.

5.1 GPU-based segmentation framework

We propose a GPU-based technique that uses four paral-
lel functions: Sketch Seeds, Grow Region, Shrink Region,
and Recover Seeds. Each function takes a set of input
seeds to produce output seeds with a self-feedback loop
(Fig. 6). Sketch Seeds converts user strokes into master
seeds which are used to initiate the segmentation process.
Grow Region expands the set of parent seeds to produce
child seeds. This function also marks the voxels that could
not be advanced (i.e. due to threshold constraints) as sus-
pended seeds. Shrink Region and Recover Seeds support
the dynamic control for thresholding. Shrink Region re-
verses the region growing steps. And, finally, Recover
Seeds allows previously suspended seeds to be reinstated
when threshold constraints are modified. These functions
are evaluated in the GPU with multi-pass processing tech-

Fig.7a,b. Partial segmentation of ventricles: a using a binary seg-
mentation map without point radiation and b with point radiation

niques and they need to have access to seeds’ informa-
tion. We store the seeds’ information in vertex buffers
and call it a seed map. It is used to control the seg-
mentation process by mapping the seeding states (such
as master, parent, child, suspended, or reinstated seeds)
into respective voxels. Communication with the seed map
is done using the geometry shader, with its unique ca-
pability of reading/writing 3D seed points into any lo-
cation in the volume. Each function starts by feeding
a source seed collection, exchanging seed growing infor-
mation with the seed map, and writing the result into the
destination seed collection. For the rendering purpose, the
result of each function operation is also recorded in a 3D
texture called a segmentation map. Direct use of the seed
collection in the segmentation map produces aliasing arti-
facts due to its binary values (segmented/not segmented)
(Fig. 7a).

To obtain smooth and high-quality rendering of the
segmentation result, we utilize point radiation to convert
the collected seeds into blended regions in the segmented
map (Fig. 7b). When the result is rendered, we sample
the segmentation map using 0.5 as a natural candidate
to distinguish between segmented and non-segmented re-
gions. Finally, the entire simulation and rendering pro-
cess is repeated by exchanging the source and destination
seeds.

696 H.-L.J. Chen et al.

5.2 Sketch-based seeding

To allow quick multi-seeding directly in 3D, we use
sketches to indicate seeds on the displayed volume. We
map multiple input strokes onto surface points of the vol-
ume using raycasting. The stroke is first discretized and
stored in a binary 2D sketch texture. Each pixel in the tex-
ture is then projected into the volume space to collect sur-
face points based on rendering parameters. For each point
on the surface, we find the closest voxel as the seed. How-
ever, as one or more of the detected surface points may be
contained within the same voxel due to variance of vol-
ume resolution, it is necessary that we remove duplicated
voxels to avoid multiple seed points at the same voxel lo-
cation. To ensure that we collect unique seed points, we
first store the collection of detected voxels in a list. Then,
for each of the non-repeating voxels in the list, we un-
project the respective voxel into a second list, storing the
master seeds that map one-to-one to unique voxels in the
volume.

5.3 Parallel region growing/shrinking

We enable region growing while exploring multiple seeds
simultaneously. During the growing process, we start from
a set of parent seeds and advance to a set of child seeds
using the breath first search. In a number of region grow-
ing situations, different materials such as tissues and blood

Fig. 8a-d. Segmentation of carotid and cerebral arteries from the
angiogram dataset: a sketches on high-intensity data with X-ray
and maximum intensity projection (MIP) rendering, b forward re-
gion grows in parallel, ¢ results in undesired tissues, and d removes
extra growth with region shrinking

vessels have close intensity values and cannot be easily
controlled by means of thresholding. The user initially
sketches seeds on the blood vessels (Fig. 8a) but, during
the growing process, a group of child seeds may start to
spread to unrelated materials (Fig. 8c).

In additional to forward growing, we introduce region
shrinking that reverses the grown regions and rewinds the
segmentation (Fig. 8d). This provides the user with an op-
portunity to undo partial region growing and cease the
segmentation process. Afterwards, the user could resume
the growing process by resketching seeds on the remain-
ing part of the original region of interest.

To have the ability of shrinking, we need to track the
parent/child relationship in the region growing. We use
the seed map to save the parent information for each seed.
With parallel execution, a conflict arises when two or more
parent seeds are concurrently exploring the same voxel lo-
cation as a child. Saving all of the possible parents at the
same voxel location (child) requires a bigger field for the
seed map’s memory unit. To avoid this, we prevent the
possibility of multiple parents by simply by over-writing
the previous values when a new parent arises. This means
that each seed (as a child) has the information of the most
recent parent in the growing process.

To shrink the grown region, we first erase the seg-
mented voxels occupied by the last set of child seeds and
then we search their neighboring voxels to find potential
parent seeds. The reversing process is based on the order
in which the child seeds are processed; therefore, it is not
guaranteed that we always return to the original set of par-
ent seeds while it is a plausible solution. Another benefit
of the reverse operation is that additional strokes can be
drawn to indicate the area of removal. In this case, the
sketched seeds become the source (i.e. the child seeds) of
the reversing operation, allowing targeted region removal.

In addition to searching for the child seeds in the paral-
lel region growing process, we mark the voxels that could
not be advanced (i.e. due to threshold constraints) as sus-
pended. The suspension information is recorded using the
seed map. When thresholds are modified, we look up the
suspended seeds from the seed map and allow them to
reparticipate in the normal region growing/shrinking iter-
ations.

6 Results and discussion

All the results were generated on an Intel Core2 Duo PC,
with a GeForce 8800 GTX, 768 MB graphics card. We se-
lected raw and presegmented volumetric medical datasets
in both CT or MRI modality. Our system achieved fast
computation rates in mask construction (80 ms), volume
tools (50 fps on average), sketching seeds (60 ms), dy-
namic region growing (58 fps), and high-quality raycast-
ing rendering (50 fps in X-ray mode and 60 fps in surface
mode), with screen recording resolution of 1230 x 870.

GPU-based point radiation for interactive volume sculpting and segmentation

697

Fig. 9. (Top) Opening skull with the peeling tool, sketching seeds on the left ventricle, regions growing into surrounding material, reversed
growing, sketching seeds on the right ventricle, and completing segmentation. (Middle) Opening abdominal wall with the peeling tool,
placing multiple strokes on colon, region growing in parallel, covering entire colon, and pasting the segmented part in isolation. (Bottom)
Lasering the skull with a circular mask, removing occluding bone, sketching seeds on the molar tooth, region growing, and pasting the

segmented tooth with zoom

Note that the performance of point radiation scales with
the amount of parallel (or stream) processors in the hard-
ware. In our experiment of point radiation, we found that
a kernel radius of 3 produced prominent results with the
best performance for data ranging from 1283 to 512°.

In Fig. I, we demonstrate peeling and segmentation
of the super-brain dataset (MRI, 256 x 256 x 256). Fig-
ure 9 (top) shows peeling of the skull and segmenta-
tion of the left and right lateral ventricles from the same
super-brain dataset; (middle) shows peeling of the ab-
dominal wall and segmentation of the colon from the ab-
domen dataset scanned in supine orientation (CT, 512 x
512 x 426); (bottom) shows lasering, drilling, and seg-
mentation of a molar tooth from the skull dataset (rota-
tional C-arm X-ray scan of phantom of a human skull,
256 x 256 x 256). Figure 8 illustrates seed sketching and
segmentation of carotid and cerebral arteries from the
angiography dataset (3T MRI time-of-flight of a human
head, 256 x 320 x 128).

7 Conclusion and future work

We proposed a GPU-based point radiation technique as
a real-time manipulation primitive in the context of high-

quality raycasting rendering. Instead of the traditional way
of browsing from hundreds of cross-sectional slices or
adapting 3D devices, we utilized the point-based strategy
and introduced interactive volume tools for direct drilling,
lasering, peeling, and cutting and pasting. With point radi-
ation, we also developed an interactive region growing seg-
mentation system and multiple seed planting with sketches.
Inhandling the large medical volume datasets, we exploited
programmable hardware and obtained a dramatic perform-
ance improvement (with local updates) compared to the
3D texture-based (global) approach in volume clipping and
region growing segmentation.

Future improvements include performing user/clinical
studies in specific medical domains to formally validate
the usability of our framework. We plan to expand the
set of volume tools, modeled after specific application
domains such as virtual surgery. It would also be useful
to extend the point radiation technique to create a non-
spherical radiation in space and possibly generate a variety
of other sculpting primitives and cutting tools. We also
foresee adapting our framework with physically based vol-
ume deformation in domains where real-time, intuitive
cutting and volume manipulation is essential (i.e virtual
surgery). Moreover, our framework may provide a ground
for a real-time implicit modeler, which requires further in-
vestigation.

698 H.-L.J. Chen et al.

References

1. Avila, R.S., Sobierajski, L.M.: A haptic
interaction method for volume
visualization. In: Proceedings of IEEE
Visualization, pp. 197-204. IEEE Computer
Society Press, San Francisco, CA (1996)

2. Bloomenthal, J.: Introduction to Implicit
Surfaces. Morgan Kaufmann Publishers
Inc., San Francisco, CA (1997)

3. Chen, H.L.J., Samavati, F.F., Sousa, M.C.,
Mitchell, J.R.: Sketch-based volumetric
seeded region growing. In: Proceedings of
Eurographics Workshop on Sketch-Based
Interfaces and Modeling 2006,
pp. 123-129. Eurographics, Vienna (2006)

4. Cook, R.L.: Stochastic sampling in
computer graphics. ACM Trans. Graph. 5,
51-72 (1986)

5. Correa, C.D., Silver, D., Chen, M.: Feature
aligned volume manipulation for
illustration and visualization. IEEE Trans.
Vis. Comput. Graph. 12, 1069-1076
(2006)

6. Ferley, E., Cani, M.P., Gascuel, J.D.:
Practical volumetric sculpting. Visual
Comput. 16, 469-480 (2000)

7. Galyean, T.A., Hughes, J.F.: Sculpting: an
interactive volumetric modeling technique.
In: Proceedings of SIGGRAPH ’91,
pp. 267-274. ACM, New York, NY (1991)

8. Huff, R., Dietrich, C.A., Nedel, L.P.,
Freitas, C.M.D.S., Comba, J.L.D.,
Olabarriaga, S.D.: Erasing, digging and
clipping in volumetric datasets with one or
two hands. In: Proceedings of the ACM
International Conference on Virtual Reality

Continuum and its Applications,
pp. 271-278. ACM, Hong Kong (2006)

9. Justice, R.K., Stokely, EIM.: 3-D
segmentation of MR brain images using
seeded region growing. In: 18th Annual
International Conference of the IEEE
Proceedings 1996, pp. 1083-1084. IEEE
Computer Society, Amsterdam (1996)

10. McGuffin, M., Tancau, L.,

Balakrishnan, R.: Using deformations for
browsing volumetric data. In: Proceedings
of IEEE Visualization, pp. 401-408. IEEE
Computer Society, Seattle, WA (2003)

11. Owada, S., Nielsen, F., Igarashi, T.: Volume
catcher. In: Proceedings of the Symposium
on Interactive 3D Graphics and Games ’05,
pp. 111-116. ACM, Washington, District of
Columbia (2005)

12. Pham, D.L., Xu, C., Prince, J.L.: A survey
of current methods in medical image
segmentation. Tech. Rep. JHU/ECE 99-01
(1999)

13. Rosenfeld, A., Kak, A.: Digital picture
processing, vol. 2, pp. 138-145. Academic,
New York (1982)

14. Schenke, S., Wuensche, B.C., Denzler, J.:
GPU-based volume segmentation. In:
Proceedings of Image and Vision
Computing New Zealand ’05, pp. 171-176.
University of Auckland, Dunedin
(2005)

15. Sherbondy, A., Houston, M., Napel, S.:
Fast volume segmentation with
simultaneous visualization using
programmable graphics hardware. In:

Proceedings of IEEE Visualization,
pp. 171-176. IEEE Computer Society,
Seattle, WA (2003)

16. Technical Brief: Microsoft DirectX 10: The
Next-Generation Graphics API. NVIDIA
Corporation (2006)

17. Tzeng, F.-Y., Lum, E.B., Ma, K.-L.:

A novel interface for higher-dimensional
classification of volume data. In:
Proceedings of IEEE Visualization 03,
pp. 505-512. IEEE Computer Society,
Seattle, WA (2003)

18. Wang, S.W., Kaufman, A.E.: Volume
sculpting. In: Proceedings of the 1995
Symposium on Interactive 3D Graphics,
pp. 151-156. ACM, Monterey, CA (1995)

19. Watt, A.: 3D Computer Graphics.
Addison-Wesley, Harlow, Essex (1989)

20. Weiskopf, D., Engel, K., Ertl, T.:
Interactive clipping techniques for
texture-based volume visualization and
volume shading. IEEE Trans. Vis. Comput.
Graph. 9(3), 298-312 (2003)

21. Westover, L.: Footprint evaluation for
volume rendering. In: Proceedings of
SIGGRAPH °90, pp. 367-376. ACM,
Dallas, TX (1990)

22. Woo, M., Neider, J., Davis, T., Shreiner, D.:
OpenGL Programming Guide, third edn.
Addison-Wesley, Harlow, Essex (1999)

23. Wyvill, B., Guy, A., Galin, E.: Extending
the CSG tree — warping, blending and
boolean operations in an implicit surface
modeling system. Comput. Graph. Forum
18, 149-158 (1999)

HUNG-L1 JASON CHEN received his B.Sc.
First Class Honours degree (2005) and M.Sc.
degree (2008) in Computer Science from the
University of Calgary, Canada. Jason’s research
interests are computer graphics, interactive
modeling/rendering, volume visualization,
volume manipulation, and 3D medical imaging.
His M.Sc. thesis describes interactive volume
manipulation and high-quality visualization for
medical data. He has worked for Autodesk and
Electronic Arts Canada.

FARAMARZ F. SAMAVATI is an associate pro-
fessor in the Department of Computer Science,
University of Calgary. He received his Ph.D.
degree from Sharif University of Technology
in 1999. Prof. Samavati’s research interests

are computer graphics, geometric modeling,
3D imaging, and interactive modeling. He

has authored more than 50 research papers in
subdivision surfaces, sketch based modeling,
multiresolution and wavelets, surface modeling,
and scientific visualization.

MARIO COSTA SOUSA is an associate pro-
fessor in the Department of Computer Science,
University of Calgary. He holds a Ph.D. degree
in computer science from the University of
Alberta. His research interests focus on illustra-
tive visualization, non-photorealistic rendering,
sketch-based interfaces and modeling, percep-
tual issues in illustration and visualization,
interactive simulations, and real-time volume
graphics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

