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Abstract

Traditional user interfaces in modeling have followed the WIMP (Window, Icon, Menu, Pointer) paradigm. While
functional and powerful, they can also be cumbersome and daunting to a novice user; creating a complex model
requires much expertise and effort. A recent trend is toward more accessible and natural interfaces, which has
lead to sketch-based interfaces for modeling (SBIM). The goal is to allow hand-drawn sketches to be used in the
modeling process, from rough model creation through to fine detail construction. Mapping 2D sketches to a 3D
modeling operation is a difficult and ambiguous task, so our categorization is based on how an SBIM application
chooses to interpret a sketch, of which there are three primary methods: to create a 3D model, to add details
to an existing model, or to deform and manipulate a model. In this STAR, we present a taxonomy of sketch-
based interfaces focused on geometric modeling applications. The canonical and recent works are presented and
classified, including techniques for sketch acquisition, filtering, and interpretation. The report also includes a
discussion of important challenges and open problems for researchers to tackle in the coming years.

1. INTRODUCTION

Creating 3D models is often a hard and laborious task due
to the complexity and diversity of shapes involved, the intri-
cate relationships between them, and the variety of surface
representations. Current high-end modeling systems such as
Maya [Auta], AutoCAD [Autb], and CATIA [Das] incor-
porate powerful tools for accurate and detailed geometric
model construction and manipulation. These systems typi-
cally employ the WIMP (Window, Icon, Menu, Pointer) in-
terface paradigm, which are based on selecting operations
from menus and floating palettes, entering parameters in di-
alog boxes, and moving control points.

Research in modeling interfaces has recently explored
alternate paradigms such as pencil-and-paper sketching to
enable fast, approximate reconstruction and manipulation
of 3D models, drawing inspiration from the cartoon and
animation industries. This paradigm is known as Sketch-
based Interfaces for Modeling (SBIM), and the goal is to
use freehand drawings and sketches as a way to create
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and edit 3D geometric models in expedited ways, mim-
icking the dynamism of traditional media. Already there
are commercial modeling packages that explore sketch-
and brush-based metaphors, allowing a modeler to draw
objects (SketchUp [Goo]) or paint details onto a surface
(ZBrush [Pix], MudBox [Autc]).

The trend and ultimate goal of SBIM research is to con-
verge modeling systems, integrating the expressive power
and control of WIMP-based systems with the expeditious
and natural interaction of sketch-based paradigms. This
would allow users to construct and edit models in a progres-
sive way, from an initial concept to a detailed and accurate
final model.

To design a computer application capable of understand-
ing sketched input, it helps to first consider how a human
perceives the world around them. Though our visual system
uses two retinal images and shading cues to interpret what
we see in three dimensions, we are nonetheless able to un-
derstand shapes from single images, even from simple line
drawings devoid of any shading cues. The effortlessness of
shape perception makes it difficult to understand and formal-
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Figure 1: (a) The SBIM pipeline: after acquiring an input
sketch and applying some filters to it, the sketch is inter-
preted as an operation in 3D. (b) a simple example (3D
model created with Teddy [IMT99]).

ize, but developing an SBIM system that behaves intuitively
from the user’s perspective requires consideration of percep-
tual and cognitive issues. In fact, SBIM stands at the inter-
section of several diverse domains, including computer vi-
sion, human-computer interaction (HCI), and cognitive sci-
ence. Though research efforts have thus far been propelled
primarily by computer graphics researchers, the emergence
of powerful commodity computer hardware is creating many
exciting opportunities for interdisciplinary work to drive the
field to exciting results.

Sketch-based systems date back to Sutherland’s Sketch-
Pad system [Sut63], which used a light-pen input device to
directly manipulate on-screen objects, preceding the ubiqui-
tous mouse by several years. SketchPad anticipated many
challenges that SBIM would encounter in the future, in-
cluding how to accept and process user input, interpret
that input as an object or operation on an object, and rep-
resent the resulting object. Sketch-based techniques have
since found utility in a wide range of modeling appli-
cations. Some examples include animation [DAC∗03, TB-
vdP04, CON05], clothing design [IH02, DJW∗06], data vi-
sualization [CSSM06], plant modeling [IOOI05, ASSJ06,
OMKK06,ZS07], image deformation [ESA07], architecture
and engineering [HU90,VMS05,YXN∗05], 3D model data-
bases [FMK∗03], mathematical sketching [LZ04], and user
interface design [CGFJ02, HD05].

In this report, we present a taxonomy of sketch-based in-
terfaces, focused on geometric modeling applications. Our
categorization is based on how an SBIM application inter-
prets a sketch, of which there are three primary methods: to
create a 3D model, to add details to an existing model, or to
deform and manipulate a model. The pipeline of an SBIM

application is summarized in Fig. 1a. The first stage is to ac-
quire a sketch from the user (Sec. 3), followed by a filtering
stage in which the sketch is cleaned up and possibly trans-
formed into a more usable form (Sec. 4). In the final stage
of the pipeline, the sketch is interpreted as the specification
of or operation on a 3D model (Sec. 5). Figure 1b depicts a
typical result from a model-creation system.

This STAR is organized as follows. After introducing
some notions of perception in Sec. 2, each stage of the SBIM
pipeline is described in detail in Sections 3–5. Section 5
also includes a discussion of two critical areas in applica-
tion design, surface representation (Sec. 5.4) and interface
(Sec. 5.5). We conclude with a discussion of challenges and
open problems (Sec. 6). The report is targeted at readers with
an interest in computer-assisted sketch recognition and re-
construction; some familiarity with computer graphics con-
cepts is helpful but not necessary.

2. BASICS OF PERCEPTION

Distance of it self, is not to be perceived; for ‘tis a
line (or a length) presented to our eye with its end
toward us, which must therefore be only a point,
and that is invisible.
– William Molyneux, as quoted in [Hof00]

The human visual system is vastly complex, yet we take
it for granted because it works so effortlessly throughout our
lives. Only in the last few decades has cognitive science re-
ally started to pay attention to how our ‘visual intelligence’
works. While a thorough discussion is beyond the scope of
this paper and our expertise, some notions from this area
have already influenced the design of SBIM systems and
will no doubt continue to do so in the future. After all, a per-
son’s perception of shape informs how they draw that shape:
perception and communication are dual sides of our visual
intelligence.

The fundamental problem that our visual system must
deal with, according to Hoffman [Hof00], is that “the image
at the eye has countless possible interpretations.” Consider
the trivial case of a sketch containing only a single point.
Even if the 2D coordinates of the point are known exactly,
the sketch could represent any subset of points lying on the
line passing through it and the viewer’s eye. Figure 2 illus-
trates the problem with a non-trivial line drawing, depicting
three of the infinitely many objects that project to a cube-like
image.

Though we can convince the logical part of our brain that
the drawing could represent something other than a cube, the
same cannot be said for the visual part. Try as we might, it
will always be seen as a cube. This interpretation emerges
as the result of relatively simple rules that govern our visual
system. To understand the rules, we first have to introduce
some terminology.

A silhouette is a filled outline segmenting an object from
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Figure 2: Ambiguous interpretation of a 2D sketch in 3D:
there are infinitely many objects that project to the same 2D
input. Reproduced with permission from [ML05].

its background, and is very meaningful for shape recogni-
tion, providing a “useful first index into [a person’s] mem-
ory of shapes” [HS97]. In computer graphics, a related no-
tion is the contour, defined as the projection of all points on
an object whose surface normal is perpendicular to the view
direction, dividing visible parts of the object from the invis-
ible. As illustrated in Fig. 3, the contour includes not just
the silhouette outline, but also reveals interior features (like
the chin and nose in the example). As our viewpoint of the
object changes, the contour also will change to reveal dif-
ferent interior features. DeCarlo et al. [DFRS03] note that
near-contours – regions of an object where a contour would
appear after a small viewpoint change – are also useful for
shape perception.

The contour of an object separates those parts of the ob-
ject facing toward the viewer from those facing away. In
non-trivial objects, there may be parts of the surface that
are facing the viewer, yet are not visible to the viewer be-
cause it is occluded by a part of the surface nearer to the
viewer. Figure 3 shows an example of this: the contour of
the neck is occluded by the chin. Note that where the neck
contour passes behind the chin, we see a T shape in the pro-
jected contour (called a T-junction), and the chin contour
ends abruptly (called a cusp). T-junctions and cusps indicate
the presence of a hidden contour, providing useful shape in-
formation. Williams [Wil94] has proposed a method for us-
ing this observation to infer hidden contour lines in an im-
age.

So how do we interpret Fig. 2 as a cube, rather than
the infinitely many other choices? We again turn to Hoff-
man [Hof00], who lists ten visual rules that are used to per-
ceive 3D shape from 2D images, based on the shape cues
provided by contours, T-junctions, and cusps.

1. Always interpret a straight line in an image as a straight
line in 3D.

2. If the tips of two lines coincide in an image, then always
interpret them as coinciding in 3D.

Figure 3: The contour of an object conveys a lot of shape in-
formation. Cutout: T-junctions and cusps imply hidden con-
tour lines (red).

3. Always interpret lines collinear in an image as collinear
in 3D.

4. Interpret elements nearby in an image as nearby in 3D.
5. Always interpret a curve that is smooth in an image as

smooth in 3D.
6. Where possible, interpret a curve in an image as the con-

tour of a surface in 3D.
7. Where possible, interpret a T-junction in an image as a

point where the full contour conceals itself.
8. Interpret each convex point on a bound as a convex point

on a contour.
9. Interpret each concave point on a bound as a saddle point

on a contour.
10. Construct surfaces in 3D that are as smooth as possible.

Since Fig. 2 contains only straight lines, the first three or
four rules apply, leading us to see the drawing as a cube. In
fact we can see two cubes, but we cannot force our eyes to
see it as anything else. In general, when trying to reconstruct
an image, “your visual system is biased. It constructs only
those 3D worlds that conform to its rules. . . . They prune the
possible depths you can see from infinity down to one or
two.”

Visual rules allow us to make sense of images we’ve never
seen before, but they are also limited in that they force us
to see the simplest object. We also have a vast memory of
shapes that is used to interpret images [HS97], imbuing them
with unseen complexity. When given an image or even just
a silhouette of a sports car, for example, we can quickly de-
termine that the object belongs to the automobile class and
infer its approximate geometry, symmetry, and scale. This
highlights an important distinction between recognition or
reconstruction [CPC04]. Reconstruction is the task of creat-
ing a complete description of the 3D geometry of an object
based on a 2D representation. A similar but distinct task is
recognition, or identifying which class of object an image
represents based on shape memory. In other words, if visual
memory can recognize a shape, we can more easily recon-
struct it. Otherwise, reconstruction falls back on the visual
rule system.

The notions of perception introduced here can help us
to understand the challenges and design decisions made in
SBIM. As we will see in Sec. 5, the ways in which SBIM
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Figure 4: Input to a sketch-based system is acquired from
pen-based or free-form devices such as a tablet display (re-
produced from [YXN∗05]).

systems deal with the ambiguity of single images relate to vi-
sual memory and rule systems. Understanding our own per-
ception also suggests ways to improve the software-based
perception required for SBIM.

3. SKETCH ACQUISITION

The most basic operation shared between all SBIM systems
is, of course, obtaining a sketch from the user. Input devices
that closely mimic the feel of freehand drawing on paper,
such as tablet displays, are better able to exploit a user’s abil-
ity to draw. Devices in which the display and input device are
coupled (Fig. 4) are particularly suited to natural interaction.
However, decoupled tablets and even a traditional mouse can
meet the basic input requirements of a sketch-based inter-
face.

Pencil and paper is a very rich medium for communica-
tion. An artist can convey information not just with the over-
all form of the drawing, but also by varying drawing pressure
and stroke style. From the artist’s perspective, the medium
itself provides feedback via the texture of the paper, as they
feel their pencil scraping across the surface – drawing on
a napkin, for instance, has a different tactile response than
regular paper.

Some efforts have been made to transfer these elements
to the digital domain. Many tablet devices are now pressure
sensitive, providing not just positional information about
the pen tip, but also a measure of how hard the user is
pressing the pen into the tablet. Haptic devices [HACH∗04]
are a more recent development that provide active feed-
back to the user through the pen device itself, such as low-
frequency vibration to simulate friction between the (vir-
tual) pencil and paper. Other possible input devices include
tabletop displays [SWSJ05] and even 3D virtual reality de-
vices [FBSS04].

Such devices are intended to increase the user’s feeling
of immersion, although they are often cumbersome and may

(a) (b) (c)

Figure 5: An input stroke (a) is provided to the application
as (b) a sequence of point samples; (c) some applications
choose to use an image-based representation.

actually decrease immersion. For instance, a haptic pen is at-
tached to an arm that provides the feedback force, decreasing
the device’s pen-like attributes. As such hardware becomes
more compact and less costly, its adoption should increase.

It should be noted that the ultimate verisimilitudinous in-
terface would be real pencil-and-paper combined with some
sort of active digitization. There are commercial products
that offer automatic digitization of text and figures [Lea],
but to date there has been little investigation in this direction
for 3D reconstruction tasks. Off-line scanning of sketches is
another option, but in this report we limit our focus to inter-
active systems.

3.1. Sketch Representation

At the bare minimum, a pen-based input device will pro-
vide positional information in some 2D coordinate system,
usually window coordinates. The interrupt-driven nature of
modern operating systems means that positional updates are
usually generated only when the device is moved. The sam-
pling rate varies from one device to the next, but in any case
the sampled positions represent a piecewise-linear approx-
imation of continuous movements (Fig. 5b). Note that the
samples are spaced irregularly, dependent on the drawing
speed. Samples tend to be spaced more closely near corners
as the user draws more carefully, a fact which can be ex-
ploited to identify ‘important’ parts [SSD01].

We will refer to a time-ordered sequence of points as a
stroke S = {p1, p2, . . . , pn}, where pi = [xi yi ti] contains a
2D coordinate and a time stamp, and the beginning and end
of a stroke are demarcated by pen-down and pen-up actions.
A sketch is comprised of one or more strokes.

The basic stroke information can be augmented by addi-
tional information, such as pressure or pen angle, depend-
ing on the target application and available hardware. Not all
SBIM systems choose to use all available information. For
example, one system may require a pressure-sensitive de-
vice, while another may ignore everything but the positional
information.

Due to the large body of work on image processing
techniques, some SBIM applications prefer an image-based
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drawing canvas

Figure 6: Sketches are embedded into 3D by projecting onto
a drawing canvas, or perhaps onto existing geometry.

stroke representation, in which the stroke is approximated
with a pixel grid (Fig. 5c). A sketch image can be obtained
either by copying the frame buffer directly from the applica-
tion, or by rendering a sketch to an off-screen buffer.

3.2. The Drawing Canvas

As Das et al. [DDGG05] note, the notion of a “drawing can-
vas” is often useful in SBIM systems to transform a sketch
from meaningless window coordinates to 3D world coordi-
nates. The simplest way to define a canvas is to choose an
axis-aligned plane, such as the x-y plane, and project the
sketch onto that plane (by setting the depth or z component
to zero, for instance). The active view-plane also works well
as a canvas, allowing the user to draw from multiple angles
as they change the viewpoint. A third variation is to project
the sketch onto an existing 3D model based on the current
viewpoint (Fig. 6).

Some SBIM systems are tailored toward casual or novice
users rather than design professionals. To assist a novice
with the sketching process, the canvas can be replaced with
an image that the user draws on top of [TBSR04,YSvdP05].
An intelligent application can also extract information from
the image and, for instance, ‘snap’ the sketch to edges in the
image [TBSR04].

4. SKETCH FILTERING & PRE-PROCESSING

Before attempting to interpret a sketch, it is usually neces-
sary to perform some filtering. One motivating factor is that
the input will invariably contain some noisy or erroneous
samples. Sezgin & Davis [SD04] identify two main culprits:
user and device error. Poor drawing skills or slight jitter in
a user’s hand results in not-quite-straight line segments and
not-quite-smooth curves. The second source of error is “dig-
itization noise” caused by spatial and temporal quantization
of the input by the mechanical hardware: “a traditional dig-
itizing tablet . . . may have resolution as low as 4-5 dpi [dots

per inch] as opposed to scanned drawings with up to 1200-
2400 dpi resolution. This is because sometimes users draw
so fast that even with high sampling rates such as 100Hz
only few points per inch can be sampled” [SD04].

Even with careful drawing, device errors and sampling is-
sues must be dealt with. Therefore, the input to a sketch sys-
tem is generally considered to be an imperfect representation
of user intention and is “cleaned up,” or filtered, before in-
terpretation. This serves to both reduce noise and to attain
a form that makes subsequent recognition and interpretation
easier. Below we present some filtering methods commonly
used in SBIM; Sec. 4.1 then discusses techniques for sketch
recognition.

Resampling The spacing between samples in a raw input
stroke varies among devices as well as with the drawing
speed of the user. A uniform sampling rate can be beneficial
at later stages in a system, so resampling the input stroke is
common [BMZB01, DJ03, KS06, OSS07]. Resampling can
be done on-the-fly by discarding any sample pk within a
threshold ε of pk−1, and by interpolating between samples
separated by more than ε. It can also be done after the sketch
is finished. Depending on the needs of the application, linear
or smooth interpolation can be used. See Fig. 7a.

Polyline approximation An extreme form of resampling is
polyline approximation (or polygon, in the case of closed
curves), which drastically reduces the complexity of a stroke
to just a few samples (Fig. 7b). For example, Igarashi’s
Teddy system [IMT99] constructs a closed polygon by con-
necting a stroke’s first and last point, and resampling the
stroke so that all edges are a uniform, predefined length. An-
other simple approach is to simply retain every n-th sample
in a stroke, although these approaches can give unsatisfac-
tory results because their sample distribution is not based on
local stroke features.

Instead, a good algorithm will place some bounds on the
amount of error introduced by approximation, retaining few
samples in flat regions and more in regions with lots of
detail. The minimax method [KD82], for instance, mini-
mizes the maximum distance of any point to the straight-
line approximating line. There are rigorous computational
geometry approaches [ESU02] for tackling this problem, but
they are intended to operate on positional information; with
sketched input, there is additional temporal information that
can be used to identify perceptually important points (cor-
ners, darts, etc.) in a stroke.

Curve Fitting Polygon approximation works well when the
input sketch is intended to be piecewise-linear, but leads to
large approximation errors when applied to smooth input.
Curve fitting is an alternative approach that yields lower ap-
proximation errors at the cost of more computation. Least-
squares polynomial fitting [Koe98] is an option, but para-
metric forms such as Bézier [Pie87, ECYBE97] and B-
spline [Rog89, BC90, KS06] curves are preferable in graph-
ics. Figure 7c illustrates spline curve fitting. Yu [Yu03] ar-
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(a) Resampled input (b) Polyline approximation (c) Fit to curve (d) Segmented

Figure 7: Filtering operations: (a) smooth uniform resampling; (b) coarse polyline approximation; (c) fit to a spline curve; (d)
segmented into straight and curved sections. In each figure, circles denote endpoints of straight line segments, while squares
represent curve control points.

(a) (b)

Figure 8: (a) Oversketching is a quick and effective way to interactively correct a sketch; (b) Oversketched strokes can be
blended in a batch process after sketching is complete (reproduced with permission from [PSNW07]); (c) Beautification infers
global geometric constraints between strokes, such as parallelism, alignment, and perpendicularity.

gues that because splines are difficult to compare at a high
level, it is better to fit primitive shapes such as circles, el-
lipses, and arcs; this approach has not caught on in SBIM
though, perhaps because it assumes too much about the
user’s intention.

More recently, subdivision and variational implicit curves
have been employed in SBIM systems. Alexe et al. [AGB04]
use a Haar wavelet transformation to get a multi-scale stroke
representation. Cherlin et al. [CSSJ05] fit a subdivision
curve to a stroke by applying reverse subdivision to the
raw stroke samples, effectively de-noising the data. Schmidt
et al. [SWSJ05] infer geometric constraints from the input
sketch to fit a variational implicit curve.

Segmentation There are many examples of sketched input
that contain both piecewise-linear and smooth sections. Of-
ten it is beneficial to explicitly segment straight and curved
sections of a sketch, fitting polylines to the former and
smooth curves to the latter [ECYBE97, SMA00, SSD01,
KOG02]. Sezgin et al [SSD01], for instance, use speed and
curvature data extracted from an input stroke to construct
a polyline approximation, and then fit cubic Bézier curves
to line segments that have a high approximation error. See
Fig. 7d. Segmentation may also refer to the identification of
distinct or meaningful sub-sketches within a sketch [LZ04].

Oversketching If a user makes a mistake while drawing a
stroke, or wants to redo a portion of an input sketch, he
or she can carefully sketch over the offending region. The
system can then update the sketch by finding the region af-
fected by the secondary stroke, splicing in the new portion,

and smoothing the transition between the old and new seg-
ments (Fig. 8a). To facilitate oversketching, an SBIM sys-
tem usually requires the user to indicate when the sketch
is finished [SSD01, DJ03, FRSS04]; alternatively, the sys-
tem can retain the original sketch and allow for (possibly
constrained) 3D oversketching later in the pipeline [CSSJ05,
KS06, KDS06, NISA07, WM07].

There is another form of oversketching used by artists in
which a drawing is made up of several overlapping strokes,
such that the strokes are collectively perceived as a single
object (Fig. 8b). Some SBIM systems allow for this type
of multi-stroke input, automatically blending the strokes to-
gether [SC04, KS05, PSNW07]. In a stroke-space approach,
the geometric relationships between strokes are used to
blend them; for example, Pusch et al. [PSNW07] use hierar-
chical space partitioning to divide many strokes into locally
orientable segments, and then fit a B-spline curve passing
through the segments. In image-based approaches, strokes
are blended together ‘for free’ when the strokes are rendered
to an image [KS05]. Finally, a semi-automatic approach may
be used, in which the user identifies which strokes can be
blended together [SWSJ05].

Beautification The techniques discussed above can all be
considered to operate on a local, or per-stroke, level. Beauti-
fication (we borrow the term from Igarashi et al. [IMKT97])
is a technique for inferring geometric constraints between
strokes on a global level, such as linearity, co-location, par-
allelism, perpendicularity, and symmetry (Fig. 9). For in-
stance, when drawing a square, the system could fit straight
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Figure 9: Beautification infers global geometric constraints
between strokes, such as parallelism, symmetry, and perpen-
dicularity.

line segments to each edge, but also infer that adjacent edges
should be at right angles to each other. Beautification can be
done either interactively [IMKT97, IH01, CNJC03] or as a
batch process after a sketch is finished [SG98].

4.1. Sketch Recognition

During sketch interpretation (Sec. 5), it is often helpful to
have a high-level description of a stroke or sketch. That is,
if the user has sketched object A, the system may be able
to recognize it by comparing against a description, or tem-
plate, Â. Generally there will be a set of possible templates,
so, much like our visual memory system, sketch recognition
algorithms are necessary to search through a “memory” of
templates and find the best match.

Many approaches have been proposed for recognizing
sketched input. An early approach by Rubine [Rub91] uses
geometric properties to compare strokes, such as the initial
angle and bounding box size. Graph-based techniques judge
similarity from the spatial relationships between strokes in
a sketch, such as crossings and shared endpoints [LKS06].
Other methods exploit domain-specific knowledge to de-
rive higher-level understanding of strokes, such as build-
ing a diagrammatic representation [AD04] or identifying
and labelling different elements [SvdP06]. Hammond and
Davis [HD05] propose a sketch recognition “language” in
which the template objects are described by their component
primitives and geometric constraints between them; for ex-
ample, a stick figure consists of a circle connected to a line,
which is itself connected to four other lines.

Stroke matching borrows conceptual elements from tra-
jectory analysis, the latter dealing with the behavior of
moving objects. In the case of a sketch, each stroke cap-
tures the trajectory of an input device. Fourier analysis is
perhaps the most common technique in trajectory analy-
sis [AFS93, NK06]. A trajectory (equivalently stroke) of
variable length is converted to a fixed-length “feature” by
separating the 2D positional information into two signals,
applying the Fourier transformation to each signal, and re-
taining a fixed number of the most-significant Fourier coef-
ficients. In this way, the Fourier features can easily be com-

pared with an element-wise distance measure. One draw-
back of the Fourier transform is that it loses locality of fea-
tures in the input due to signal-sized waves. Wavelet meth-
ods [CF99] attempt to address this issue by using smaller
waves, but suffer from signal length restrictions. The Fourier
method has been used in the context of SBIM by Shin &
Igarashi’s Magic Canvas system [SI07] (discussed in more
detail in Sec. 5.1.1).

Shape matching is another existing field with parallels
to sketch recognition, mostly based on comparing silhou-
ettes and contours (see Veltkamp [Vel01] for a good intro-
duction). There are important distinctions to make between
sketch recognition, however. First, the underlying represen-
tation used in shape matching is typically an image or pixel-
map, while sketch-based systems are based on stroke input.
Image-based techniques have been explored in the context
of sketch recognition [FMK∗03, KS05], but this conversion
loses the potentially important temporal and auxiliary (pres-
sure, etc.) information available in a sketch. A second dis-
tinction is that sketch-based systems strive for interactive
performance, and will often trade rigor for computational
efficiency. Funkouser et al. [FMK∗03] argue for the use of
image-based matching in applications in which the user is
free to provide “fragmented sketch marks,” because contour
matching methods will likely fail on such input. This is less
of a problem in light of recent work in batch oversketching
to blend fragmented sketches into a single contour.

Though much can be learned from the literature in other
domains, the best results are likely to be obtained from meth-
ods targeted at the particular problem of sketch recognition.
For example, the Teddy system [IMT99] uses simple geo-
metric properties of strokes, such as the ratio of a stroke’s
length to its convex hull perimeter, to match input strokes to
operations (see Sec. 5.3). Yang et al. [YSvdP05] similarly
extract a few simple measurements from a stroke, including
straight-line length, angle, free-form arc length, and the area
between the stroke and its straight-line approximation; these
values are used as a stroke “signature” for recognition. More
recently, Olsen et al. [OSS07] propose a method of describ-
ing a stroke based on quantizing its angular distribution, and
within the context of SBIM were able to outperform clas-
sical methods, including Fourier. Each of these approaches
would likely give poor results for general shape matching,
but perform well within their target application.

5. SKETCH INTERPRETATION IN SBIM

After a sketch has been sufficiently filtered, converted, and
recognized, the next stage of the pipeline is interpret the
sketch. We propose a categorization of SBIM systems based
on how input strokes are interpreted. The most important cat-
egory includes systems that create fully 3D models automat-
ically from input sketches (Sec. 5.1). Other important tasks
include using input strokes to augment existing models with
details (Sec. 5.2) and to deform an existing model (Sec. 5.3).
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Table 1: Taxonomy of sketch-based modeling systems, including creation mode (Sec. 5.1), surface representation (Sec. 5.4),
editing operations (Sec. 5.2 and 5.3), and interface type (Sec. 5.5).

There are a variety of surface representations available to
an SBIM system, each having strengths and weaknesses
(Sec. 5.4). Finally, choosing the correct interpretation at the
correct time requires a carefully designed interface, as dis-
cussed in Sec. 5.5.

A classification of ‘complete’ SBIM systems – that is,
systems that offer both model creation and editing tools
via a sketching metaphor – is presented in Table 1, from
early (SKETCH [ZHH96], Teddy [IMT99] to state-of-the-
art (SmoothSketch [KH06], FiberMesh [NISA07]) systems.
The table summarizes the main techniques used and features
offered in each system, and also indicates the surface repre-
sentation and interface design choices when such informa-
tion is available.

5.1. Model Creation Systems

To make a reasonable attempt at reconstruction, an SBIM
system must somehow perceive a 3D shape from the 2D in-
put. We divide the gamut of creation systems into two cat-

egories: suggestive, and constructive. This aligns with the
classical distinction between reconstruction and recognition.
Suggestive systems first recognize which template a sketch
corresponds to, and then use the template to reconstruct the
geometry. Constructive systems forgo the recognition step,
and simply try to reconstruct the geometry. In other words,
suggestive systems are akin to visual memory, whereas con-
structive systems are more rule-based.

Because suggestive systems use template objects to inter-
pret strokes, their expressiveness is determined by the rich-
ness of the template set. Constructive systems, meanwhile,
map input sketches directly to model features; therefore,
their expressiveness is limited only by the robustness of the
reconstruction algorithm and the ability of the system’s in-
terface to expose the full potential.

Of course, there is some overlap between constructive and
suggestive systems. This is mostly embodied by suggestive
systems that deform the template objects to match the in-
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Figure 10: A suggestive-stroke system extrapolates a 3D
form from only a few evocative strokes.

put sketch [YSvdP05], or constructive systems that exploit
domain-specific knowledge.

5.1.1. Suggestive Strokes

Suggestive-stroke systems are characterized by the fact that
they have some “memory” of 3D shapes built in, which
guides their interpretation of input sketches. Reconstruction
of a sketch depends on being able to recognize it. This corre-
lates with the concept of visual memory, but transferring the
entire visual experience of a human to a computer is a daunt-
ing task. Therefore, suggestive systems are only as good as
their shape memory allows them to be. Within this category,
we identify two main approaches: extrapolation, and tem-
plate retrieval.

Extrapolation In this approach, the system extrapolates a
final 3D shape based on only a few meaningful strokes
[ZHH96,PJBF00]. A classical example is the SKETCH sys-
tem of Zeleznik et al. [ZHH96], which uses simple groups of
strokes to define primitive 3D objects. Three linear strokes
meeting at a point, for instance, are replaced by a cuboid
whose dimensions are defined by the strokes (see Fig. 10).

The Chateau system of Igarashi and Hughes [IH01] also
extrapolates shape from a few strokes. Limiting their system
to architectural forms allows it to make assumptions about
the input such as planarity, symmetry, orthogonality, and so
forth. The interactive nature of the system also keeps the
recognition tasks simple and concise, avoiding many prob-
lematic cases since the user can see immediately how the
system has or will interpret their action.

Template Retrieval The second main approach is to retrieve
template objects from a database or set of template objects
based on the input sketch [FMK∗03, YSvdP05, SI07]. This
approach is more extensible than extrapolation: adding new
behavior to the system is as easy as adding a new object to
the database. Conversely, because the “building blocks” –
the shape templates – are generally more than just primitive
objects, it may be impossible to attain a specific result.

A retrieval-based system faces the problem of matching
2D sketches to 3D templates. To compare their similarity
in 3D would require reconstruction of the sketch, which is
the ultimate problem to be solved. Thus, comparison is typi-
cally done by projecting the 3D model into 2D. Funkhouser

Figure 11: A template retrieval system matches sketches to
3D models, useful for applications such as scene construc-
tion. Reproduced with permission from [SI07].

et al. [FMK∗03], for example, extract the contour from 13
different viewpoints to define the shape of an object. Input
sketches are then compared against each of these contours
by an image-based matching method. To improve the recog-
nition rate, the user can sketch three different views of an ob-
ject. In a user study, they found that “people tend to sketch
objects with fragmented boundary contours and few other
lines, they are not very geometrically accurate, and they use
a remarkably consistent set of view directions.” These ob-
servations allowed them to extract meaningful 2D represen-
tations of the 3D templates.

Shin and Igarashi’s Magic Canvas system [SI07] uses
template retrieval for scene construction (Fig. 11). They too
extract several (16) contours from each template object, but
use a stroke-based Fourier method for contour matching.
Constructing a scene with several objects requires not just
template retrieval, but also correct placement of each object
within the scene. Thus, Magic Canvas rotates and scales the
objects to match the input sketch orientation, and also in-
fers simple geometric relationships (such as a lamp resting
on top of a desk). User intervention is required to initiate the
retrieval process on subsketches within the scene, and also
to choose appropriate objects among several candidates.

Yang et al. [YSvdP05] propose a similar template-based
system, but rather than mesh-based templates, they use
procedurally-described models. Instead of having a mug
mesh for a template, for instance, they have a template that
describes how to make a mug out of simple primitives. This
approach has the benefit of allowing the template to be de-
formed to match the input sketch, rather than just replaced
with an instance of the template. However, the procedural
template definition makes adding new templates more diffi-
cult than mesh-based approaches.

5.1.2. Constructive Strokes

Pure reconstruction is a more difficult task than recognize-
then-reconstruct, because the latter uses predefined knowl-
edge to define the 3D geometry of a sketch, thereby skirting
the ambiguity problem to some extent (ambiguity still exists
in the recognition stage). Constructive-stroke systems must
reconstruct a 3D object from a sketch based on rules alone.
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Figure 12: CAD systems exploit domain-specific knowledge
to reconstruct quite complex sketches. Adapted with permis-
sion from [CNJC03].

Because reconstruction is such a difficult and interdiscipli-
nary problem, there have been many diverse attempts at solv-
ing it. We identify three main interpretations in constructive
systems: CAD drawings, contour lines, and 3D boundaries.

Computer-Assisted Design (CAD) Design and specifica-
tion of mechanical (i.e. mostly planar) objects is an impor-
tant industrial application of computer modeling. As such,
it attracted attention early in the life of SBIM [Pug92,
SG98,PJBF00,CNJC03,CPC04,FBSS04,VTMS04,VMS05,
ML05]. Focusing on a particular domain helps to constrain
the reconstruction problem. In CAD systems, the input is
usually assumed to be a line drawing that defines an object
in an orthogonal frame, roughly in line with the first three vi-
sual rules proposed by Hoffman. This allows unambiguous
reconstruction of drawings such as the cube in Fig. 2; the
choice of orthogonal frame eliminates one of the two possi-
ble cube orientations.

Reconstruction of CAD drawings depends on identifying
the locations of vertices, or corners, of the object. In an inter-
active system, vertex positions and connections can be deter-
mined as the user draws the strokes; reconstruction from an
image alone would be more difficult, as vertex connections
would have to be determined algorithmically.

Early approaches left most of the burden on the user.
For example, Pugh’s system [Pug92] started from a primi-
tive object like a cube in order to provide a 3D reference,
and required the user to explicitly specify geometric con-
straints. Later approaches to CAD reconstruction fall into
one of two classes: interactive, or batch. Interactive ap-
proaches [PJBF00,CNJC03] reconstruct the geometry incre-
mentally as the user sketches (Fig. 12), allowing the user to
see the result and possibly correct or refine it. Batch sys-
tems [FBSS04, VMS05, ML05] wait until the user has pro-
vided a complete sketch and attempt to reconstruct it accord-
ing to internal rules or vertex-connection templates.

Recent systems have included support for curved seg-
ments in CAD drawings. Varley et al. [VTMS04] use a two-
stage approach: in the first stage, the user draws an overall
model structure with only straight lines; in the second stage,
the model is re-drawn with curved segments, and the recon-
structed model from the first stage acts as a template for re-
construction. Masry and Lipson [ML05] also use a two-stage
approach, but theirs is hidden from the user: the system auto-

e

Figure 13: Extrusion is a simple method for reconstructing
a contour, by sweeping it along an extrusion vector e.

matically extracts a straight-line representation via segmen-
tation.

The CAD approach overlaps somewhat with suggestive
systems, in that expressiveness is limited by the domain in
question. However, reconstruction is not based on or lim-
ited by recognition: the user is free to create an almost lim-
itless variety of objects within that domain, unhindered by
any template set (at least in the sense of object templates
used in suggestive systems – some CAD systems do in fact
use templates for vertices of different orientation and va-
lence [Pug92]).

Contour Lines Though some CAD systems support curved
strokes, reconstruction is still based on a straight-line rep-
resentation. Reconstructing smooth, natural objects requires
a different approach. As Hoffman’s sixth rule indicates, our
visual system interprets smooth line drawings as 3D con-
tours when possible. Fittingly, the majority of construc-
tive SBIM systems choose to interpret strokes as contour
lines [ECYBE97,IMT99,AGB04,TZF04,CSSJ05,SWSJ05,
KH06, NISA07]. There are still many objects that corre-
spond to a given contour, so further assumptions must be
made to reconstruct a sketch. A key idea in constructive sys-
tems is to choose a simple shape according to some internal
rules, and let the user refine the model later.

To justify this approach, we might observe that of the
three plausible models shown in Fig. 2 whose contour lines
project to a cube-like object, only the cube itself conforms
to the our visual rules. Hoffman [Hof00] calls the other can-
didates “accidental views”, since any slight change in view-
point would reveal them to be non-cubes. Because of this,
they are eliminated as candidates by our visual system. Now
consider a user of an SBIM system who wants to draw one
of the non-cubes. Would they choose to draw the object from
the accidental viewpoint? Not likely, because their own vi-
sual rules would see it as a cube. So although there are in-
finitely many ways to reconstruct a drawing, the number of
corresponding non-accidental shapes is substantially lower.

Perhaps the most simplistic method of reconstruction is
extrusion – that is, creating a surface by “pushing” the con-
tour through space along some direction e [ECYBE97,SC04,
SWSJ05, WM07]; see Fig. 13 for an illustration. This tech-
nique, also known as linear sweep, is useful for creating
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(a) (b) (c)

Figure 14: Inflation of contour sketches: (a) the Delaunay triangulation (interior lines) and chordal axis (red line) are useful
during reconstruction; (b) Teddy inflates a contour drawing about its chordal axis (reproduced with permission from [IMT99]);
(c) SmoothSketch infers hidden contour lines (green lines) before inflation (reproduced from [KH06]).

models with hard edges, such as cubes (extruded from a
square) and cylinders (from a circle).

Extrusion results in models with a quadrilateral cross-
section, which is inappropriate for many natural objects.
To attain models with smoother cross-sections, surfaces of
revolution are a common alternative [ECYBE97, CSSJ05,
SWSJ05]. Cherlin et al. [CSSJ05], for instance, construct-
ing a generalized surface of revolution about the medial axis
between two strokes (the authors refer to this construction as
rotational blending surfaces). Their system also allows the
user to provide a third stroke that defines a free-form cross-
section.

Circular cross-sections can also be achieved by inflating a
contour sketch, akin to blowing up a balloon [IMT99, DJ03,
KH06]. For simple (i.e. non-intersecting) closed contours,
inflation is an unambiguous way to reconstruct a plausible
3D model. The Teddy system [IMT99] inflates a closed con-
tour by creating a polygon approximation, computing the
Delaunay triangulation (DT) [dBvKOS00], extracting the
chordal axis, and then inflates the object by pushing vertices
away from the chordal axis according to their distance from
the contour; see Fig. 14b for a typical result.

The “skeleton” of a closed contour defined by the chordal
axis transform (or other methods [LG07]) is a useful piece
of information to an SBIM system [IMT99, DJ03, AGB04,
TZF04]. A skeleton consists of all points within the contour
that are equidistant from at least two points on the contour,
and can be approximated from the DT of a closed polygon by
connecting the center points of adjacent non-boundary trian-
gles (Fig. 14a). As Teddy has shown, the chordal axis and
DT can be used to generate a triangle mesh model quickly
and easily. The skeletal representation of a contour also inte-
grates naturally with an implicit surface representation. In
the approach of Alexe et al. [AGB04], spherical implicit
primitives are placed at each skeleton vertex; when the prim-
itives are blended together, the result is a smooth surface
whose contour matches the input sketch.

For non-simple contours, such as ones containing self-
intersections, a simple inflation method will fail. Karpenko
and Hughes [KH06] also use an inflation approach, but they
use the contour completion of Williams to infer the hidden
contours in a sketch (Fig. 14c). This information allows the

sketch to be positioned in 3D such that it can be inflated
without self-intersections. A smooth shape is attained by first
creating a “topological embedding” and then constructing a
mass-spring system (with springs along each mesh edge) and
letting the system reach a smooth equilibrium state. Cordier
and Seo [CS07] also use Williams’ contour completion al-
gorithm, but propose a different method of reconstructing a
model from an input sketch. Rather than using mass-spring
mesh relaxation – which requires careful parameter tuning
and does not guard against self-intersections – the authors
use Alexe et al.’s implicit surface reconstruction method.

A final way to reconstruct a contour sketch is to fit a sur-
face that is, as Hoffman’s tenth rule suggests, “as smooth as
possible”. Surface fitting approaches operate on the premise
that the input strokes represent geometric constraints of the
form, ‘the surface passes through this contour, with surface
normals defined by the contour’s normal.’ These constraints
define an optimization problem: of the infinite number of
candidates, find one suitable candidate that satisfies the con-
straints. Additional constraints such as smoothness and thin-
plate energy [Wil94] are required to push the system toward
a solution. This approach has been used to reconstruct vari-
ational implicit surfaces [TO99, DJ03, SWSJ05]. More re-
cently, Nealen et al. [NISA07] have used a non-linear opti-
mization technique to generate smoother meshes while also
supporting sharp creases and darts.

3D Sketching The reconstruction methods for 2D contours
lead to fairly bland-looking models, due to the simplistic
rules governing them. Other ways to disambiguate sketched
input are to sketch with 3D strokes [FBSS04, DDGG05,
RSW∗07], or to sketch from multiple viewpoints [PJBF00,
FMK∗03,TBSR04,HL07]. These strokes are typically inter-
preted as object boundaries. Das et al. [DDGG05], for ex-
ample, use a 3D network of curves to define the boundaries
of an object, smoothly interpolating between them to recon-
struct a model. Rose et al. [RSW∗07] also use 3D boundary
sketches, to define smooth planar deformations known as de-
velopable surfaces.

However, sketching in 3D is arguably less intuitive since
our visual system is built around 2D stimuli. Thus most sys-
tems are content to implement simple reconstruction within
an iterative modeling paradigm. That is, rather than the user
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(a) (b)

Figure 15: Sketch-based augmentations: (a) surficial aug-
mentation displaces surface elements to create features
(from [OSSJ05]); (b) additive augmentation joins a new part
with an existing model (reproduced with permission from
[IMT99]). The latter figure also includes surficial features
(the eyes).

creating 3D or multiple sketches of an object, they can re-
construct a single sketch, rotate the model, sketch a new
part or a deformation, ad infinitum until the desired result
is achieved. The editing components of such a system are
the topic of the following two sections.

5.2. Augmentation

As the previous section illustrated, creating a 3D model from
2D sketches is a difficult problem whose only really fea-
sible solutions lead to simplistic reconstructions. Creating
more elaborate details on an existing model is somewhat eas-
ier however, since the model serves as a 3D reference for
mapping strokes into 3D (Fig. 6). Projecting a stroke onto
a model relies on established graphical techniques, such as
ray-casting (cast a ray from eye position through stroke point
on the drawing plane) or unprojection (invert the view ma-
trix, then use z-buffer to find depth) [OSSJ05]. Augmenta-
tions can be made in either an surficial or additive manner.

Surficial augmentation allows users to sketch fea-
tures on the surface of the model, such as sharp
creases [BMZB01, OSSJ05, NISA07] or curve-following
slice deformations [ZG04]. After a sketch has been pro-
jected onto a surface, features are created by displacing the
surface along the sketch. Usually the surface is displaced
along the normal direction, suitable for creating details like
veins (Fig. 15a). The sketched lines may also be treated
as new geometric constraints in surface optimization ap-
proaches [NISA07].

Surficial augmentations can often be done without chang-
ing the underlying surface representation. For example, to
create a sharp feature on a triangle mesh, the existing model
edges can be used to approximate the sketched feature and
displaced along their normal direction to actually create the
visible feature [NSACO05, OSSJ05].

Additive augmentation uses constructive strokes to define
a new part of a model, such as a limb or outcropping, along
with additional stroke(s) that indicate where to connect the
new part to the original model [IMT99,NISA07]. For exam-
ple, the extrusion operator in Teddy [IMT99] uses a circular
stroke to initiate the operation and define the region to ex-
trude; the user then draws a contour defining the new part,
which is inflated and attached to the original model at the
connection part (Fig. 15b). Schmidt et al. [SWSJ05] exploit
the easy blending afforded by an implicit surface represen-
tation to enable additive augmentation, with parameterized
control of smoothness at the connection point. Their sys-
tem does not require explicit specification of the connection
point, since implicit surfaces naturally blend together when
in close proximity. Additive augmentation only affects the
original model near the connection point.

The somewhat subjective difference between the two
types of augmentation is one of scale: surficial augmenta-
tions are small-scale and require only simple changes to the
underlying surface, whereas additive augmentations are on
the scale of the original model. The distinction can become
fuzzy when a system allows more pronounced surficial aug-
mentations, such as Zelinka and Garland’s curve analogy
framework [ZG04], which embeds 2D curve networks into
arbitrary meshes, and then displaces the mesh along these
curves according to a sketched curve.

5.3. Deformation

Besides augmentation, there have been many SBIM systems
that support sketch-based editing operations, such as cutting
[WFJ∗05, JLCW06, NISA07], bending [IMT99, CSSJ05,
JLCW06, KS06, WM07], twisting [KG05], tunneling (cre-
ating a hole) [SWSJ05, NISA07] contour oversketching
[NSACO05, ZNA07], segmentation [YXN∗05, JLCW06],
free-form deformation [DE03], and affine transformations
[SSS06]. And, like augmentation, sketch-based deforma-
tions have a straightforward and intuitive interpretation be-
cause the existing model or scene anchors the sketch in 3D.

To cut a model, the user simply needs to rotate the model
to an appropriate viewpoint and draw a stroke where they
want to divide the model. The stroke can then be interpreted
as a cutting plane, defined by sweeping the stroke along the
view direction (Fig. 16a). Tunneling is a special case of cut-
ting, in which the cutting stroke is a closed contour contained
within a model – everything within the projected stroke is
discarded, creating a hole.

Other deformations are based on the idea of oversketch-
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(a) (c)(b)

Figure 16: Sketch-based deformations: (a) cutting strokes (blue) define a cutting plane along the view direction (from
[WFJ∗05]); (b) bending a model so that the reference stroke (red) is aligned with the target stroke (blue) [IMT99]; (b) contour
oversketching matches object contours (yellow) to target strokes (green) (reproduced with permission from [NSACO05]).

ing. For example, bending and twisting deform an object by
matching a reference stroke to a target stroke, as shown in
Fig. 16b. Contour oversketching is also based on matching a
reference to a target stroke, but in this case, the reference is
a contour extracted from the model itself, as in Fig. 16c.

Nealen et al. [NISA07] support a handle-based defor-
mation, allowing object contours to be manipulated like
an elastic. When a stroke is “grabbed” and dragged, the
stroke is elastically deformed orthogonal to the view plane,
thereby changing the geometric constraint(s) represented by
the stroke. As the stroke is moved, their surface optimization
algorithm recomputes a new fair surface interactively.

Free-form deformation (FFD) is a generalized deforma-
tion technique based on placing a control lattice around an
object or scene. Objects within the lattice are deformed when
the lattice points are moved, akin to manipulating a piece
of clay. Draper and Egbert [DE03] have proposed a sketch-
based FFD interface that extends the functionality of Teddy,
allowing bending, twisting, and stretching. Both local and
global deformations can be specified with FFD.

Model assembly – typically an arduous task, as each com-
ponent must be translated, rotated, and scaled correctly – is
another editing task that can benefit from a sketch-based in-
terface. Severn et al [SSS06] propose a technique for apply-
ing affine transformations to a model with a single stroke.
From a U-shaped transformation stroke, their method deter-
mines a rotation from the stroke’s principal components, a
non-uniform scaling from the width and height, and a trans-
lation from the stroke’s projection into 3D. By selecting
components and drawing a simple stroke, the model assem-
bly task is greatly accelerated.

Sketch-based interfaces have also been explored for char-
acter animation, using hand-drawn sketches to specify key
poses or positions in an animation sequence [DAC∗03, TB-
vdP04, CON05]. Davis et al. [DAC∗03], for instance, ex-
tract joint positions from a stick-figure sketch via image-
processing techniques such as erosion; geometric and physi-
cal constraints are then applied to rule out implausible poses,
and the character model is deformed to match the sketched
pose. Thorne et al. [TBvdP04] instead allow the user to

sketch character motion in 2D or 3D, using a set of sketch
“gestures” (see Sec. 5.5) that can be mapped to pre-defined
motions such as walking and jumping.

5.4. Surface Representation

Choosing an appropriate surface representation is an impor-
tant design decision. Each has benefits and drawbacks that
must be weighed to suit the needs of the intended applica-
tion. Below we discuss the main surface types.

Parametric Surfaces include NURBS patches, surfaces
of revolution, and rotational blending surfaces, and are pa-
rameterized over a 2D space [ECYBE97, CSSJ05]. They
are a well-studied representation and easy to integrate into
an application. However, because of the simple parameter
space, the topology of a single surface is limited to shapes
homeomorphic to a plane. Building more interesting shapes
with branching structures or complex topology requires ei-
ther crude patch intersections or careful alignment of several
patches.

Meshes are another well-studied surface representation
used in SBIM [IMT99, DDGG05, NSACO05, HL07, LG07].
Unlike parametric surfaces, meshes support arbitrary topol-
ogy. The drawback of meshes is that some editing operations
are difficult to implement, such as blending two objects to-
gether. Mesh quality is also an issue [IH03, LG07, WM07].
A mesh-like representation is necessary for rendering an ob-
ject to the display, but more flexible representations can be
used in the background.

Implicit surfaces naturally support hierarchical modeling,
blending, and boolean operations. However, attaining inter-
active performance is technically challenging because the
surface must be discretized to a mesh representation be-
fore rendering. Nevertheless, with careful implementation
implicit surfaces have been shown to be a viable surface rep-
resentation for SBIM [DJ03,AGB04,SWSJ05], and are also
used as an intermediate representation from which to extract
a mesh [TZF04, LG07].

Fair surfaces are meshes that result from solving a con-
strained optimization problem [Wil94, NISA07, RSW∗07].
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As the user sketches, new constraints are defined and the
solution is re-computed. This is a very flexible represen-
tation and well-suited to SBIM, but has a couple of im-
portant drawbacks. First, the fitted surfaces are generally
very smooth, even with sharp-feature constraints, limiting
the expressiveness. Second, because the surface results from
a global optimization, the resulting surface is sometimes un-
expected from the user’s perspective.

5.5. Interface Design

With all of the possible ways to interpret an input stroke
or sketch – creation, augmentation, deformation – how does
the system decide what to do at any given moment? Tradi-
tional modeling applications use modal interfaces, requiring
the user to explicitly choose an operation mode from a menu
or toolbar before performing the operation. Modal interfaces
have also been used in SBIM systems. For example, to ini-
tiate the bending operation in Teddy the user must click a
button after drawing the reference stroke; this informs the
system to interpret the next stroke as a target stroke and per-
form a bending operation.

There are two main approaches to building sketch-based
interfaces: suggestive and gestural. In a suggestive inter-
face, the system will consider all possible interpretations
(or modes), and let the user decide which one is intended
[ECYBE97, IMKT97, IH01, TBSR04, SWSJ05]. Returning
to the bending operation in Teddy, the system would realize
that the first stroke could either be a surficial detail or a ref-
erence stroke for bending, and somehow notify the user of
the multiple interpretations. Figure 17 depicts a suggestive
interface in action.

Figure 17: Suggestive interfaces: when ambiguous user in-
put is provided, the user can be given a choice among sev-
eral possible interpretations (insets). Reproduced with per-
mission from [IH01].

The problem with modal interfaces is that the user may
become frustrated by errors that result from being in the in-
correct mode. Non-modal interfaces attempt to avoid mode

errors by designing non-redundant inputs [Ras00], and have
been used in SBIM systems that seek a unified sketch-based
interface.

In a gestural interface, an operation is specified by a sim-
ple, distinct gesture stroke [PJBF00,LLRM00,LM01,DE03,
TBvdP04,KS06,OSS07]. Mapping a gesture to an operation
requires some sort of sketch recognition, such as the meth-
ods discussed in Sec. 4.1. However, the complexity of recog-
nition can be reduced by the gesture vocabulary: often, quite
simple recognition will suffice for a well-defined set of ges-
tures, since “perceptual similarity of gestures is correlated
with . . . computable features such as curviness” [LLRM00].
Care should be taken to design a ‘good’ set of gestures – that
is, a set that is distinct, memorable, and easy to draw.

When an interface relies on successful recognition, there
is some probability that an input will be mis-recognized; this
can become frustrating for a user if it happens too often.
A simple way to guard against this is to combine gestural
and suggestive interfaces: the recognized gesture is chosen
as the default operation, but the user is able to override it.
Another option is to train the gesture recognizer with user
input, tailoring the system according to how each individual
user tends to draw the gestures [KS05, KS06].

6. CHALLENGES & OPEN PROBLEMS

Despite the incredible advances in SBIM, there remain sev-
eral important open problems. Reconstruction and recogni-
tion algorithms still have a long way to go before approach-
ing the power of human perception, and the inherent am-
biguity of 2D images suggests that flawless reconstruction
of arbitrary sketches is impossible. A recognition-based ap-
proach is primarily limited by the size of the available shape
memory. Therefore, as Karpenko & Hughes [KH06] suggest,
a hybrid system “in which the user’s sketch is both inflated
and matched against a large database of known forms” could
be very powerful. A hybrid approach would also temper the
fact that while constructive systems are generally suited to
building rough prototypes or cartoony-looking models, sug-
gestive systems can produce more precise models from the
template set.

The development of SBIM, in some ways, parallels the
development of non-photorealistic rendering (NPR). NPR
asks the question, “How can a 3D model be rendered ar-
tistically in a way that accurately and clearly reveals its
shape?” Early approaches found that contour lines alone are
very evocative of the visual memory, similar to the use of
contour lines for reconstruction in most early SBIM sys-
tems. NPR approaches advanced beyond contour lines to in-
clude suggestive contours, hatching lines, pen-and-ink, stip-
pling, and various other artistic ways to provide shape cues.
Perhaps SBIM – which has been referred to as “inverse
NPR” [NSACO05] – can learn from these developments and
extract shape information from artistic cues. While there
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has been some progress toward extracting shape informa-
tion from shading in single images (shape-from-shading)
[ZTCS99, PF06], it remains an open and challenging area
in SBIM.

Model quality remains another important challenge in
SBIM. Because the user does not have precise control over
the surface as they would in a traditional modeling pack-
age, and due to the typical “as smooth as possible” recon-
struction approach, models created by SBIM systems tend
to have a blobby appearance. Recent work such as Fiber-
Mesh [NISA07], which allows the specification of sharp
creases and darts, is a step in the right direction. In the fu-
ture, modeling concepts such as multiresolution editing and
topology-changing operations could dramatically increase
the utility of sketch-based systems.

Designing the interfaces such that there is a noticeable and
worthwhile increase in utility compared to a traditional in-
terface is another challenge. While navigating through three
levels of menu items to find the desired operation in Maya
may be cumbersome, once it has been found and activated
the result of the operation is predictable and deterministic.
A sketch-based system, on the other hand, is largely built
around elaborate guesswork and inference, of classifying in-
put as being more like Operation A than Operation B. When
a system makes the wrong choice, it can be very frustrating
for the user. As Landay and Myers note about their system,
“failure to provide sufficient feedback about its recognition
was the source of most of the confusion” [LM01]. Thus,
designing SBIM systems with the right combination of al-
gorithmic and interface elements to provide stable and pre-
dictable interaction is a huge challenge for ongoing research.
This includes the ability to recognize troublesome inputs and
smoothly guide the user to a resolution.

Sketch-based interfaces also suffer from the problem of
self-disclosure [JJL07]. Traditional WIMP interfaces are
discoverable, in the sense that a user can look at the menu
titles, icons, buttons, and dialog boxes, and garner some idea
of what the application can do and how to use it. An SBIM
system, on the other hand, may simply provide the user with
a blank window representing virtual paper, with no buttons
or menus whatsoever. Though it may be more usable and ef-
ficient for someone who has been given a tutorial, such an
interface does not disclose any hints about how to use it. De-
vising elegant solutions to this problem is a large challenge
for SBIM researchers.

Finally, sketch-based or gestural interfaces have the po-
tential to improve other modeling tasks. Already there have
been some novel uses of gestural interfaces, such as cloth-
ing manipulation [IH02, DJW∗06], finite element analy-
sis [ML05], procedural plant modeling [OMKK06, ZS07]
and even stuffed toy design [MI07]. In each case, sketched
input is used to define an initial state of a complex physical
simulation or procedural model, domains that are typically
encumbered with many parameters and initial settings to de-

fine. Mori and Igarashi [MI07] provide an intriguing exam-
ple of how SBIM techniques could be integrated with phys-
ical simulation: “if one can run an aerodynamic simulation
during the interactive design of an airplane model, it might
be helpful to intelligently adjust the entire geometry in re-
sponse to the user’s simple deformation operations so that it
can actually fly.” Exploring the output space of a procedural
or physical model can be much more natural and efficient
with free-form gestures, a notion that needs to be explored
more fully in the future.

7. CONCLUSION

Sketch-based systems have a reputation of being suitable
only for “quick-and-dirty” [YSvdP05] modeling tasks, an
image that must be shed if the field wants to be a viable
alternative to high-end modeling packages. This report has
shown a tremendous diversity of techniques and applica-
tions, illustrating that SBIM is suitable to a wide range of
modeling tasks.

We simply have to embrace the ambiguous nature of
sketched input. Art is often an iterative process, progressing
from a rough outline to a highly detailed product – a char-
acter animator will first draw the form of a character with
ellipses and other primitive shapes, then slowly add layers
of complexity. The key is that the medium is predictable: an
artist knows exactly what will happen when a pencil is ran
across a piece of paper, or a paint brush across a canvas. This
should inspire SBIM to pursue stable and predictable inter-
faces that naturally support an iterative methodology, rather
than blind reconstruction. As Nealen et al. [NSACO05] ar-
gue, though “our capability to derive a mental model from
everyday shapes around us is well developed, we fail to prop-
erly communicate this to a machine. This is why we have to
model in a loop, constantly correcting the improper interpre-
tation of our intentions.”

The confluence of so many disciplines – graphics, vision,
HCI, cognition – will ensure sketch-based modeling remains
an exciting and challenging topic for years to come.
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