
High Performance Graphics (2010)
M. Doggett, S. Laine, and W. Hunt (Editors)

A Work-Efficient GPU Algorithm for Level Set Segmentation

Mike Roberts, Jeff Packer, Mario Costa Sousa, Joseph Ross Mitchell

University of Calgary, Canada

Abstract

We present a novel GPU level set segmentation algorithm that is both work-efficient and step-efficient. Our algo-
rithm: (1) has linear work-complexity and logarithmic step-complexity, both of which depend only on the size of
the active computational domain and do not depend on the size of the level set field; (2) limits the active compu-
tational domain to the minimal set of changing elements by examining both the temporal and spatial derivatives
of the level set field; (3) tracks the active computational domain at the granularity of individual level set field
elements instead of tiles without performance penalty; and (4) employs a novel parallel method for removing du-
plicate elements from unsorted data streams in a constant number of steps. We apply our algorithm to 3D medical
images and we demonstrate that in typical clinical scenarios, our algorithm reduces the total number of processed
level set field elements by 16× and is 14× faster than previous GPU algorithms with no reduction in segmentation
accuracy.

1. Introduction

Identifying distinct regions in images – a task known as seg-
mentation – is an important task in computer vision [OP03]
and medical imaging [SPM∗09]. The level set method is a
powerful and flexible numerical technique for image seg-
mentation under challenging conditions [Whi94] since the
segmentation process can depend on both intrinsic factors
(e.g. the curvature of the segmented regions) and extrinsic
factors (e.g. the intensity or texture of the image). Lefohn et
al. [LCW03] and Cates et al. [CLW04] showed that level set
segmentation methods can reduce the variability of difficult
segmentation tasks in medical imaging. However the flexi-
bility of the level set method has historically resulted in long
computation times and therefore limited clinical utility.

In this paper we describe a new GPU level set segmenta-
tion algorithm that dramatically improves computational ef-
ficiency without affecting segmentation accuracy. Our new
algorithm results from two distinct contributions:

1. A method for limiting the active computational domain to
the minimal set of changing elements by examining both
the temporal and spatial derivatives of the level set field;
and

2. A work-efficient [AF98] and step-efficient [NPGM00]
mapping of this method to manycore GPU architectures
that avoids traversing the entire level set field after ini-

tialization and employs a novel method of removing du-
plicate elements from unsorted data streams in a constant
number of steps.

We describe our algorithm and demonstrate signif-
icant performance benefits over previous GPU algo-
rithms [LCW03, LKHW03, CLW04, LKHW04]. In a series
of controlled experiments using noisy magnetic resonance
images (MRIs) generated from the BrainWeb Simulated
Brain Database [SBD, KEP96, CKK∗97, CZK∗98, KEP99],
we demonstrate that our algorithm: (1) reduces the total
number of processed level set field elements by 16× and
and converges 14× faster than previous GPU algorithms;
and (2) produces equally accurate segmentations to previous
GPU algorithms with less than 0.2% variability in all exper-
iments. Our algorithm runs entirely on the GPU without re-
quiring any additional data processing on the CPU, thereby
enabling interactive 3D visualization and real-time control
of the evolving level set surface.

2. Background and Previous Work

2.1. Level Set Segmentation

The level set method for image segmentation [Whi94] em-
beds an implicitly represented seed surface within an im-
age, and then iteratively deforms the surface to envelop the
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containing region-of-interest (ROI). Each implicitly defined
point on the surface is deformed along a path normal to the
local surface. Level set segmentation methods commonly
use an application-specific speed function F (x, t) to deter-
mine the local rate of surface motion, where x is a coordi-
nate in the image and t is the current time in the simulation.
For a more comprehensive review of level set methods and
their applications to image segmentation, we refer the reader
to Sethian [Set99], and Osher and Paragios [OP03].

In this paper we adopt the speed function proposed by
Lefohn et al. [LCW03, LKHW03, LKHW04]. This function
determines surface speed according to the local mean sur-
face curvature and the local intensity of the image. By taking
into account the level set surface’s curvature, we encourage
a smooth surface and prevent the surface from leaking into
undesired areas across weak, incidental connections at ROI
boundaries. For the scalar field φ(x, t) : R4 7→R, we define
our level set surface as {x | φ(x, t) = 0}.

As proposed by Lefohn et al. [LCW03, LKHW03,
LKHW04], we define the data term of our speed function
D(x) = ε− (|I (x)|−T ) to be a function of the image inten-
sity I (x), the user-specified target intensity T that will en-
courage maximal surface growth, and a user-specified inten-
sity window parameter ε within which the level set surface is
encouraged to grow. If I (x) is between T −ε and T +ε, then
D(x) will encourage surface growth, otherwise D(x) will
encourage surface contraction. We define the curvature term
of our speed function as C (x, t) = ∇ · ∇φ(x,t−∆t)

|∇φ(x,t−∆t)| , where

∇ · ∇φ(x,t−∆t)
|∇φ(x,t−∆t)| is the local mean surface curvature of the

level set field from the previous iteration.

We define our speed function as F (x, t) = αC (x, t) +
(1−α)D(x) where α ∈ [0,1] is a user-specified blending
term that controls the relative influence of the curvature and
data terms on the behavior of our speed function. For a
detailed account of how this speed function can be imple-
mented, we refer the reader to Lefohn et al. [LKHW04]. We
express the level set field update equation as follows.

φ(x, t) = φ(x, t−∆t)+∆tF (x, t) |∇φ(x, t−∆t)| (1)

Two distinct algorithms for efficiently solving Equation 1 are
directly relevant to our work: The GPU narrow band algo-
rithm [LCW03, LKHW03, CLW04, LKHW04, JBH∗09] and
the sparse field algorithm [Whi98, PMO∗99].

2.2. The GPU Narrow Band Algorithm

The narrow band algorithm [Ada95] only computes level
set field updates inside a small region (i.e. a narrow band)
of elements around the implicitly defined level set sur-
face. This algorithm has been successfully ported to the
GPU [LCW03, LKHW03, CLW04, LKHW04, JBH∗09] by
using various virtual memory paging schemes to map the
irregular and dynamic narrow band onto a physically con-
tiguous domain better suited for GPU computation. These

virtual memory paging schemes partition the level set field
into tiles and map each active tile (i.e. each tile containing
elements in the narrow band) to a contiguous physical block
of GPU memory. GPU narrow band algorithms only perform
level set computations on active tiles. This significantly im-
proves performance and saves a large amount of GPU mem-
ory because inactive virtual tiles do not need to be stored on
the GPU. In turn, this allows for images larger than the size
of available GPU memory to be segmented.

Until very recently, GPU narrow band algo-
rithms [LCW03, LKHW03, CLW04, LKHW04] have
maintained the narrow band by using parallel data reduction
techniques on the GPU in cooperation with the CPU. The
GPU generates a down-sampled memory image of active
tiles which is subsequently downloaded by the CPU at the
end of each iteration. The CPU is responsible for traversing
the down-sampled image, determining the narrow band for
the next iteration, and communicating this result back to
the GPU. Since the CPU must sequentially traverse the
down-sampled image when updating the narrow band,
these algorithms have O(n) work-complexity [AF98] and
step-complexity [NPGM00] where n is the size of the
active computational domain. Moreover since the CPU
work for each iteration cannot begin until the GPU work is
finished and vice versa, these algorithms are limited by the
communication latency between the GPU and CPU.

Developed in parallel with our own work, the GPU nar-
row band algorithm very recently described by Jeong et
al. [JBH∗09] avoids the communication latency inherent in
previous GPU narrow band algorithms by traversing the do-
main of active tiles in parallel on the GPU. When a thread
determines that a new tile should become part of the narrow
band, the thread appends that tile to a list of active tiles stored
in GPU memory. Since many threads are potentially append-
ing to this list in parallel, Jeong et al. use GPU atomic mem-
ory operations to serialize access to the list. Therefore this
system also has O(n) work-complexity and step-complexity.

2.3. The Sparse Field Algorithm

In contrast to the GPU narrow band algorithm, the sparse
field algorithm [Whi98, PMO∗99] incrementally updates a
linked list of active elements on the CPU during each iter-
ation. Therefore this algorithm’s work-complexity is O(n).
The sparse field algorithm also reduces its total amount of
work by a constant factor by tracking the active computa-
tional domain at the granularity of individual elements in-
stead of tiles. Historically the sparse field algorithm has been
poorly suited to parallel implementation due to its reliance
on linked lists. No parallel implementation of the sparse field
algorithm currently exists in the literature. Therefore its step-
complexity is equal to its work-complexity.

GPU narrow band systems [LCW03, LKHW03, CLW04,
LKHW04, JBH∗09] have historically outperformed opti-
mized sequential sparse field systems. Nonetheless the GPU
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narrow band system we tested took over 100 seconds to con-
verge on the white and grey matter in a 2563 MRI of a hu-
man head on a state-of-the-art GPU. This limitation con-
strains clinical applications and motivates our work-efficient
algorithm, which leverages ideas from both the GPU nar-
row band algorithm and the sparse field algorithm. We begin
the presentation of our algorithm by describing our novel
method for tracking the active computational domain.

3. A Temporally Coherent Active Computational
Domain

The narrow band and sparse field algorithms described in the
previous section avoid unnecessary computation by only up-
dating field elements near the level set surface. We make the
observation that even computations near the level set surface
can be avoided in regions where the level set field has locally
converged. This observation motivates our method of track-
ing the active computational domain according to both the
temporal and spatial derivatives of the level set field.

We define the minimal set of active coordinates at time t
as A(t) = {x | φ(x, t) 6= φ(x, t−∆t)}. From Equation 1 we
derive two conditions, each of which is sufficient to imply
that x /∈ A(t). Both of these conditions are independent of
our speed function and could therefore be applied to a variety
of level set simulations.

The first condition ς1 follows directly from Equa-
tion 1 and can be expressed as follows: ς1 (x, t) ≡
|∇φ(x, t−∆t)| = 0. We note that ς1 is described by Lefohn
et al. [LKHW03, LKHW04].

The second condition ς2 requires a more detailed dis-
cussion. We define the set η(x) as the set of all coordi-
nates in the immediate neighborhood of x (including x it-
self). We observe that if φ(x, t−∆t) = φ(x, t−2∆t), then
∆φ(x)

∆t = 0. In other words φ is in a state of temporal equi-
librium at x. Assuming the speed function is defined locally,
the only event that could potentially disrupt this state of tem-
poral equilibrium at x is if φ(n) changes for some neighbor
n ∈ η(x). If the level set field is in a state of temporal equi-
librium in the neighborhood around x at time t− 2∆t, then
x will continue to be in a state of temporal equilibrium at
time t − ∆t. This leads to the following expression for ς2:
ς2 (x, t)≡ ∀n∈η(x) : φ(n, t−∆t) = φ(n, t−2∆t).

We include a more formal derivation of ς2 in Appendix A.
For the logical not operator ¬we formally express our active
set as follows:

A(t) =


Domain(φ) t = 0
{x | ¬ς1 (x, t)} t = ∆t
{x | ¬ς1 (x, t)}∩{x | ¬ς2 (x, t)} t > ∆t

(2)

A diagram describing our method of tracking the active com-
putational domain is shown in Figure 1.

1: for all coordinates x ∈ Domain(φ) in parallel do
2: φ

read
x ← clamp(‖x− c‖− r)

3: φ
write
x ← clamp(‖x− c‖− r)

Listing 1: Initializing the level set field to the signed and
clamped distance transform relative to a user-specified seed
sphere with the center c and the radius r.

4. A Work-Efficient Parallel Algorithm

We want to track the active computational domain and per-
form updates on the level set field in a way that is both work-
efficient and step-efficient. In other words we want a parallel
algorithm with work-complexity and step-complexity of at
most O(n). This upper bound on work-complexity and step-
complexity motivates the algorithm described in this section.
A high level overview of our algorithm is as follows:

1. Initialize the level set field and generate a dense list of
active coordinates.

2. Update the level set field at all active coordinates.
3. Generate new active coordinates. During this step gener-

ating duplicate active coordinates is permitted.
4. Remove all duplicate active coordinates generated in (3).
5. Compact all the unique new active coordinates from (4)

into a new dense list.
6. If there are no active coordinates in the new dense list,

the segmentation has globally converged. Otherwise go
to (2).

4.1. Assumptions

We assume φ is 3D and the voxels in φ are 6-connected.
Therefore it is guaranteed that for all voxels x∈Domain(φ),
the set η(x) contains at most seven elements: the 6-
connected neighbors of x and x itself. We define the set
E = {(0,0,0) ,(±1,0,0) ,(0,±1,0) ,(0,0,±1)} as the set of
offset vectors from a voxel to its 6-connected neighbors.

4.2. Data Structures and Notation

Our algorithm requires three 3D buffers: φ
write and φ

read to
store the current and previous level set field respectively; and
U to use as a scratchpad. Our algorithm also requires eight
1D buffers: V to store the current dense list of active coordi-
nates; and B(0,0,0), B(±1,0,0), B(0,±1,0), and B(0,0,±1) to use
as auxiliary buffers when generating new active coordinates.
The size of each buffer is equal to the size of the entire level
set field. All buffers are initially filled with null values.

In our implementation the data type of φ
write and φ

read is
32-bit floating point and the data type of all other buffers is
32-bit integer. To maximize memory efficiency when storing
3D level set field coordinates in these integer buffers, we
pack the x, y, and z components of each 3D coordinate into
11, 11, and 10 bits respectively. However if the level set field
contains more than 2048×2048×1024 = 232 elements, the
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Figure 1: Our algorithm for tracking the active computational domain. Image data is shown in grey, currently segmented regions
are shown in green, and intermediate results for computing the active computational domain are shown in blue. The active
computational domain is outlined in black, and inactive elements are shown as partially transparent. The user places a seed to
initialize the level set field and the initial active computational domain is determined according to the spatial derivatives of the
level set field (a). During each iteration the level set field is updated at all active elements (b). The new active computational
domain is computed according to the temporal and spatial derivatives of the level set field (c). If the new active computational
domain is empty (d) then our segmentation has globally converged (e). Otherwise we go to (b).

data type of each integer buffer must be expanded such that
the largest possible level set field coordinate can fit into a
single element.

We use a subscript notation to refer to individual buffer
elements. For example Vi refers to the ith element of V ; V j...k
refers to the range of elements in V from V j to Vk; and Ux
refers to the element of U with the 3D coordinates x.

4.3. Initialization

We initialize in parallel every coordinate in φ
read and φ

write

according to a user-specified seed region as shown in List-
ing 1. For more details on this initialization step we refer the
reader to Lefohn et al. [LKHW04].

We then generate a densely packed buffer of active coor-
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1: for all coordinates x ∈ Domain(φ) in parallel do
2: g← false
3: for all coordinates n ∈ η(x) do
4: if not g then
5: if φ

read
x 6= φ

read
n then

6: g← true
7: if g then
8: Ux← x
9: V ← compact(U)

Listing 2: Initializing the list of active coordinates. The spa-
tial derivative of the level set field is tested on line 5.

1: for all coordinates v ∈V0...n in parallel do
2: φ

write
v ← φ

read
v +∆tF (v, t)

∣∣∣∇φ
read
v

∣∣∣
3: Uv← null
4: swap

(
φ

read ,φwrite
)

Listing 3: Updating the level set field according to Equa-
tion 1 and clearing the scratchpad at all active coordinates. n
is the current size of the active computational domain.

dinates V based on the contents of φ
read as shown in List-

ing 2. We test every coordinate of φ
read in parallel to deter-

mine which ones are active. If a coordinate is deemed ac-
tive according to Equation 2, we write that coordinate to
our 3D scratchpad U using the coordinate itself as the 3D
array index. We compact U in parallel to produce V . We
set the initial size of the active computational domain n to
be the number of coordinates that were compacted into V .
For more details on this buffer compacting operation we
refer the reader to Harris et al. [HSO07] and Sengupta et
al. [SHZO07, SHG08]. We note that since U contains either
a unique value or null at all coordinates, it is guaranteed that
there are no duplicate coordinates in V0...n. At this point our
algorithm has been fully initialized. We avoid traversing the
entire level set field for the remainder of our algorithm.

4.4. Updating the Level Set Field

During each iteration we update φ
write and clear U at all ac-

tive coordinates as shown in Listing 3. This is guaranteed
to completely clear U because the only non-null values in U
are at active coordinates, each of which was previously com-
pacted into V . At this point we are finished updating the level
set field for this iteration, so we swap references to φ

read and
φ

write.

4.5. Generating New Active Coordinates

We traverse our current list of active coordinates in parallel
and test for new active coordinates according to Equation 2.
We describe this process in Listing 4 and Figure 2. We test ς1
and ς2 for the next iteration by examining φ

read = φ(t) and
φ

write = φ(t−∆t). We note that at the end of this step, the

1: for h← 0 to n in parallel do
2: v←Vh
3: g← false
4: for all coordinates n ∈ η(v) do
5: if φ

read
n 6= φ

write
n and φ

read
n 6= φ

read
v then

6: g← true
7: e← n−v
8: Be

h← n
9: if g then

10: B(0,0,0)
h ← v

Listing 4: Generating new active coordinates. The temporal
and spatial derivatives of the level set field are tested on line
5. n is the current size of the active computational domain.

Figure 2: Generating new active coordinates. There may
be duplicate coordinates in the auxiliary buffers when taken
collectively. All duplicate coordinates must subsequently be
removed (see Figure 3).

seven auxiliary buffers may contain duplicate coordinates
when taken collectively. This is because each thread tests
a local neighborhood of coordinates and some coordinates
may be tested repeatedly by different threads.

4.6. Removing Duplicate Active Coordinates

We make the observation that although there may be dupli-
cate coordinates in the seven auxiliary buffers taken collec-
tively, it is guaranteed that there are no duplicate coordinates
in each of the seven auxiliary buffers taken individually. This
is because there are no duplicate coordinates in V0...n and for
all offset vectors e ∈ E, either Be

i = Vi + e or Be
i = null for

all array indices i where 0≤ i≤ n.

Based on the guarantee in the previous paragraph, we
are able to remove all duplicate coordinates in seven passes
without requiring any additional sorting or synchronization
primitives. We describe this process in Listing 5 and Fig-
ure 3.

4.7. Compacting the New Active Coordinates

We compact the seven auxiliary buffers in parallel to produce
a new dense list of active coordinates and store the result in
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1: E′← E−{(0,0,0) ,(0,0,1)}
2: for all coordinates b ∈ B(0,0,0)

0...n in parallel do
3: if b 6= null then
4: Ub← tagged
5: for all offset vectors e ∈ E′ do
6: for h← 0 to n in parallel do
7: b← Be

h
8: if b 6= null then
9: if Ub = tagged then

10: Be
h← null

11: else
12: Ub← tagged
13: for h← 0 to n in parallel do
14: b← B(0,0,1)

h
15: if b 6= null and Ub = tagged then
16: B(0,0,1)

h ← null

17: V ← compact
(

B(0,0,0)
0...n ,B(±1,0,0)

0...n ,B(0,±1,0)
0...n ,B(0,0,±1)

0...n

)
Listing 5: Generating a new dense list of unique active coor-
dinates without sorting the auxiliary buffers. n is the current
size of the active computational domain.

V as shown in Listing 5. Since we only ever write to the first
n elements of each auxiliary buffer, we only need to compact
7n elements in total, rather than compacting the total size of
each buffer. In order to further improve the efficiency of this
buffer compacting step, we allocate the auxiliary buffers dy-
namically at the beginning of each iteration by partitioning
a larger pre-allocated buffer.

After compacting the seven auxiliary buffers, we check if
any new active coordinates were compacted into V . If so, we
clear Be

0...n for all offset vectors e ∈ E, update n to be the
number of new active coordinates that were compacted into
V , and go to the step described in section 4.4. Otherwise our
algorithm has globally converged on the segmented region
contained in φ

read .

4.8. Memory Efficiency

All memory accesses to the 1D buffers V , B(0,0,0), B(±1,0,0),
B(0,±1,0), and B(0,0,±1) are fully coalesced. These buffers are
always accessed via a unique thread index such that neigh-
boring threads always access neighboring locations in mem-
ory.

In general none of the memory accesses to the 3D buffers
φ

read , φ
write, and U can be coalesced. After initialization

these buffers are always accessed at sparse active coordi-
nates which are not guaranteed to be neighboring for neigh-
boring threads. Therefore it is not clear how to take ad-
vantage of GPU shared memory as a programmer-managed
cache for level set computations using our algorithm. For
this reason our implementation does not use GPU shared
memory.

Figure 3: Removing duplicate coordinates from the aux-
iliary buffers in parallel without sorting. Coordinates that
have not been previously tagged in the scratchpad buffer are
shown in blue. Coordinates that have been previously tagged
in the scratchpad buffer are shown in red, and are removed
from their containing auxiliary buffer. This process is free
of race conditions because each step examines one auxiliary
buffer and there are no duplicate coordinates within each
auxiliary buffer.

However since there is some spatial locality in the ac-
tive computational domain, it is probable but not guaranteed
that nearby active coordinates in V are nearby in 3D space.
We leverage this spatial locality by reading from our 3D
buffers via the hardware-managed texture cache. To improve
multi-dimensional cache coherence, we use a simple swiz-
zled memory layout as described by Engel et al [EHK∗06].

5. Evaluation

5.1. Algorithmic Complexity

The algorithm we use for buffer compacting has O(w) work-
complexity and O(log2w) step-complexity where w is the
size of the input [HSO07, SHZO07, SHG08]. Therefore our
algorithm has O(p) work-complexity and O(log2 p) step-
complexity during initialization where p is the size of the
entire level set field. After initialization our algorithm has
O(n) work-complexity and O(log2n) step-complexity where
n is the size of the active computational domain. From this
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(a) the aorta and kidneys in a 256× 256× 272 abdominal CT image
– total computation time 16 seconds

(b) the cortical bone and trabecular bone in a 288× 352× 112 wrist
CT image – total computation time 12 seconds

Figure 4: Segmentation results from our system.

we conclude that our algorithm is both work-efficient and
step-efficient.

Our algorithm requires O(p) memory. In other words
the memory requirements of our algorithm increase linearly
with the size of the level set field rather than the surface
area of the segmented surface, as is the case with previous
GPU algorithms [LCW03, LKHW03, CLW04, LKHW04,
JBH∗09].

Figure 5: The progression of our algorithm while segment-
ing the white and grey matter in a 2563 head MRI with a
signal-to-noise ratio of 11 – total computation time 7 sec-
onds.

5.2. Experimental Methodology

We performed all our experiments on an Intel 2.5 giga-
hertz Xeon Processor with 4 gigabytes of memory and
an NVIDIA GTX 280 GPU. We implemented our algo-
rithm using CUDA [NVI10] and we used the CUDA Data
Parallel Primitives Library [CUD] for buffer compacting.
We implemented the GPU narrow band algorithm using
OpenGL [SWND05] and GLSL [Ros06] with a tile size
of 162, as described by Lefohn et al. [LCW03, LKHW03,
LKHW04]. We feel this is the fairest method of evaluating
each algorithm since the GPU narrow band algorithm relies
on hardware features not exposed in CUDA (e.g. direct write
access to texture memory). Likewise our algorithm makes
use of hardware features not exposed in OpenGL and GLSL
(e.g. random write access to global memory).

We performed various segmentation tasks on volumet-
ric images generated from the BrainWeb Simulated Brain
Database [SBD, KEP96, CKK∗97, CZK∗98, KEP99]. This
database can be used to generate simulated head MRIs with
a variety of realistic noise characteristics in a controlled set-
ting where the ground truth classification of each voxel is
known. We repeated these segmentation tasks using our al-
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Figure 6: The progression of the active computational do-
main (shown in blue) while segmenting the white matter in
a 2563 head MRI. Regions that have locally converged are
immediately marked as inactive due to our analysis of the
temporal and spatial derivatives of the level set field. The
size of the active computational domain drops to zero when
the segmentation has globally converged.

gorithm, the GPU narrow band algorithm, and a level set
solver implemented in CUDA that unconditionally updates
the entire level set field. We also performed various segmen-
tation tasks on a 256× 256× 272 abdominal CT image and
a 288×352×112 wrist CT image using our algorithm.

6. Results and Discussion

Figure 4 shows qualitatively accurate segmentations pro-
duced with our algorithm. Figure 5 shows the progression
of our algorithm while segmenting the white and grey mat-
ter in a 2563 head MRI with SNR = 11. Figure 6 shows the
progression of the active computational domain while seg-
menting the white matter in the same MRI.

We compare the accuracy of our algorithm and the GPU
narrow band algorithm in Figure 7. We observed that our al-
gorithm was slightly more accurate than the GPU narrow
band algorithm with less than 0.2% variability in all ex-
periments. We speculate that this slight accuracy improve-
ment is due to different floating point precision semantics in
CUDA and GLSL. The accuracies we observed are compa-
rable to those reported by Lefohn et al. [LCW03] and Cates
et al. [CLW04].

We show the performance of our algorithm and the GPU
narrow band algorithm in Figure 8. We observed that with
our algorithm, the number of active voxels quickly peaked
and decreased over time due to our analysis of the temporal
and spatial derivatives of the level set field. With the GPU
narrow band algorithm, the number of active voxels mono-

Figure 7: Accuracy of our algorithm and the GPU narrow
band algorithm while performing a set of repeated (N=10)
white matter segmentations in a 2563 head MRI with varying
signal-to-noise-ratio (SNR) values. For each segmentation
we used a randomly selected seed point and we measured
the Dice Coefficient (D) and Total Correct Fraction (TCF).

tonically increased over time (Figure 8(a)). We observed that
after the number of active voxels had peaked, the speed of
our algorithm increased over time in contrast to the GPU
narrow band algorithm (Figure 8(b)).

Based on the observed linear relationships between the
number of active voxels per iteration and the computation
time per iteration (Figure 8(c)), we conclude that the compu-
tational domain would need to be roughly 12% active before
unconditionally updating every voxel would provide a per-
formance benefit over our algorithm. At first glance it may
seem as though the GPU narrow band algorithm would pro-
vide a performance benefit over our algorithm after the com-
putational domain is roughly 9% active. However due to the
GPU narrow band algorithm processing data in 2D tiles of
size g2, an active computational domain of size n using our
algorithm will result in a larger active computational domain
of size q where n ≤ q ≤ g2n using the GPU narrow band
algorithm. We observed that the computational domain re-
mained less than 2% active during each iteration of our al-
gorithm in all experiments.

We observed that tracking the active computational do-
main using our algorithm accounted for 77% of the total
computation time and updating the level set field accounted
for the remaining 23% of the total computation time (Fig-
ure 8(d)). We conclude that although most of our compu-
tation time goes into tracking the active computational do-
main, we leverage this cost to avoid the bigger downstream
cost of unconditionally updating the entire level set field.

7. Conclusions

We have presented a new GPU level set segmentation algo-
rithm with immediate applications in computer vision and
medical imaging. Our algorithm is the first and only GPU
level set segmentation algorithm to be presented in the lit-
erature with linear work-complexity and logarithmic step-
complexity. Moreover our algorithm makes use of a novel

c© The Eurographics Association 2010.
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Figure 8: Performance of our algorithm and the GPU narrow band algorithm while segmenting the white and grey matter in
a 2563 head MRI. We measured the size of the active computational domain per iteration (a), computation time per iteration
(b), computation time as a function of active computational domain size (c), and the computation time per iteration for each
subroutine in our algorithm (d). In (c) we overlay the lines of best fit for each algorithm. Lower is better for all graphs.

condition on the temporal derivatives of the level set field
to limit the active computational domain to the minimal set
of changing elements. These innovations improve compu-
tational efficiency without affecting segmentation accuracy
and create new possibilities for clinical application where
speed and interactivity are critical.
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Appendix A: Derivation of the Active Set Condition ς2

We define the set of all user-specified parameters to the
speed function as H and the user-specified image as I.
We define η(x) = {x,nx

0,n
x
1,n

x
2, . . . ,n

x
k} to be the set

of coordinates in the immediate neighborhood of some
voxel x. We define the set of all of level set field val-
ues in the immediate neighborhood of x at time t as
Φ(x, t) = {φ(x, t) ,φ(nx

0, t) ,φ(n
x
1, t) ,φ(n

x
2, t), . . . ,φ(n

x
k , t)}.

We assume that the speed function F(x, t) is a function
of the level set values around x during the previous itera-
tion Φ(x, t−∆t), the image I, and the set of user-specified
parameters H. We assume without loss of generality that
∆t 6= 0.

We want to prove that ∀n∈η(x) : φ(n, t−∆t) = φ(n, t −
2∆t) implies φ(x, t) = φ(x, t−∆t). If this claim is true, it
means that we can exclude x from our active set at time t if
∀n∈η(x) : φ(n, t−∆t) = φ(n, t− 2∆t). We begin by proving
a useful lemma.

Lemma 1 Φ(x, t−∆t) = Φ(x, t−2∆t) implies F (x, t) =
F (x, t−∆t).

Proof 1 We assume Φ(x, t−∆t) = Φ(x, t−2∆t). By defi-
nition F (x, t) = f (Φ(x, t−∆t) , I,H) for some function f .
Therefore we get F (x, t−∆t) = f (Φ(x, t−2∆t) , I,H) =
f (Φ(x, t−∆t) , I,H) = F (x, t). �

Now we move onto our central proof.

Claim 1 ∀n∈η(x) : φ(n, t−∆t) = φ(n, t − 2∆t) implies
φ(x, t) = φ(x, t−∆t).

Proof 2 We prove by contradiction. We assume that ∀n∈η(x) :
φ(n, t−∆t) = φ(n, t − 2∆t). From this expression and the
definition of Φ we get Φ(x, t−∆t) = Φ(x, t−2∆t). From
Lemma 1 we get F (x, t) = F (x, t−∆t). From the definition
of∇φ we get∇φ(x, t−∆t) =∇φ(x, t−2∆t).

We assume for the sake of contradiction that φ(x, t) 6=
φ(x, t−∆t). Substituting this inequality into Equation 1
we get φ(x, t)− φ(x, t−∆t) = ∆tF (x, t) |∇φ(x, t−∆t)| 6=
0. From the zero product rule we get F (x, t) 6= 0 and
|∇φ(x, t−∆t)| 6= 0.

From our initial assumption that ∀n∈η(x) : φ(n, t−∆t) =
φ(n, t − 2∆t), and since x ∈ η(x), we get φ(x, t−∆t) =
φ(x, t − 2∆t). Substituting the right hand side of this
expression into Equation 1 we get φ(x, t−∆t) =
φ(x, t−∆t) + ∆tF (x, t−∆t) |∇φ(x, t−2∆t)|, or equiv-
alently ∆tF (x, t−∆t) |∇φ(x, t−2∆t)| = 0. From this
expression and the zero product rule we get either
F (x, t−∆t) = 0 or |∇φ(x, t−2∆t)|= 0.

We assume for the moment that F (x, t−∆t) = 0. Since
F (x, t) = F (x, t−∆t) we get F (x, t) = 0 which leads
to a contradiction. Now we assume for the moment that
|∇φ(x, t−2∆t)| = 0. From this expression, and since
∇φ(x, t−∆t) =∇φ(x, t−2∆t), we get |∇φ(x, t−∆t)| = 0
which also leads to a contradiction. Therefore φ(x, t) =
φ(x, t−∆t). �
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