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Abstract—We present an improved method for synthesis of
patterns defined as 2D collection of vector elements. Current
solutions to this problem rely on triangulation of the input space
or statistical measures of the sample to drive the synthesis step.
We propose a method applicable to colored textures, from regular
to stochastic, and which provides control over local density of
elements. Also, our results show the same visual quality as
previous works. The sample is segmented into groups of similar
elements and we use a novel local neighborhood distance metric
to compare distinct and incomplete neighborhoods. This metric
does not ignores existing unpaired elements. The main synthesis
loop consists of a procedural growth, where seeds are replaced
by a reference to an element from the sample, generating new
seeds until the target space is filled.

Index Terms—texture synthesis; distribution patterns; vectorial
textures;

I. INTRODUCTION

Texture Synthesis [1], [2] has been used for more than a
decade now to render arbitrarily large images of textures from
samples with great success. More recently, the same ideas have
been applied to a new class of textures of vectorial elements
[3], [4], [5], which we will call patterns of distributions, or
only patterns.

These patterns present a new challenge to synthesis methods
from image samples, since they are made of collections of
vector elements described and traditional texture synthesis is
not directly applicable. The input data is described with ele-
ments, instead of pixels. The attractiveness of solutions to this
problem comes from using as input real patterns, usually hand-
drawn. The output pattern should have the same appearance
as the input sample, but with additional functionalities such
as arbitrary resolution, controls for tasks such as filling a
large area, and control over features such as density, scale,
and others not easily done in manual systems.

As the main contribution of this work, we present an
improved solution for synthesis of this type of patterns inspired
by traditional pixel and patch-based texture synthesis. The
solution does not require any triangulation of the sample or
expensive gathering of statistical data, and yet allows the
control of the local density of elements. Also, the method
provides good results for a large variety of patterns, from
regular to stochastic, and for colored or black and white
textures, as illustrated in Figure 1. We collect perceptually-
meaningful distribution data about the vector-described ele-

ments (a seminal idea from [3]) and use this data in the
procedural growth step to check if an element should be
inserted onto the target pattern. The ‘best’ element to fill the
target pattern will minimize a local neighborhood metric, much
as raster texture synthesis minimizes a color L2 norm in most
algorithms.

II. RELATED WORK

A. Texture Synthesis from Samples

Texture synthesis from samples is an excellent solution for
building textures which are not only visually similar to the
given sample but also can be built at user-defined resolutions.
Non parametric raster texture synthesis from a sample is
the traditional approach, where the basic elements are the
pixels [1], [2], [6]. The texture is considered a realization of a
Markov Random Field, such that the color of the pixel should
be completely determined by its neighborhood. The main
problem is to determine the shape of the neighborhood and the
rule that relates the pixel with its surroundings. However, the
semantics of the texture being synthesized remains unknown,
since at the pixel-level only the color defines the basic element
and the lattice structure is strictly defined.

Later work extended the idea from combining pixels to
patches of the sample [7], [8], [9], [10]. The final texture
is formed by joining together pieces or blocks of the original
sample, with a RGB metric for selecting the best matches.
Later work introduced arbitrarily shaped patches [11], new
methods for sewing the patches (graph cuts) [12], and wavelets
as the proximity criterion among patches [13]. There has been
a lot of activity in this area in the last few years and a good
review of the work so far is given in the Siggraph 2007 course
presented by Kwatra and colleagues [14].

B. Arrangement Pattern Synthesis

Stroke pattern synthesis was studied in the past to gener-
ate stipple drawings [15], pen and ink representations [16],
[17], engravings [18], and painterly rendering [19]. Those
systems, however, rely on generative rules chosen by the user
or brought from traditional drawing techniques. Kalnins et
al. [20] present a method for synthesizing stroke offsets to
generate new strokes similar to those appearing in the supplied
sample. Similar problem is addressed by Hertzman et al. [21]
and Freeman et al. [22], but neither method reproduces the
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Fig. 1. Illustrative patterns synthesized by our method.

interrelation of strokes within a pattern. Jodoin et al. [23]
address the problem of synthesizing hatching strokes arranged
linearly along a path.

Barla et al. [5] address the more general problem, synthe-
sizing two-dimensional patterns of distributions. Their method
is divided into two steps: input analysis and synthesis. In their
analysis step, a collection of curves given as input is processed
and strokes are grouped together into elements (such as circles,
spirals, line segments, etc) that compose the sample. The
distribution is triangulated using the center of each element
as a vertex. In the synthesis step, such elements are copied
many times to the vertices of a regular triangulation artificially
generated. Random displacements on the final position of the
elements are included to improve the overall visual result.
Their main limitation is in the analysis step, where only well
behaved textures can be used, unlike many of the irregular
patterns presented on later work and also on this paper. Also,
there is not any control over the local density of elements.
Ijiri et al. [4] propose a similar method, although they take
the input as a collection of already defined elements. The
final texture is constructed from a procedural growth, starting
from one single seed, in order to simulate the same process
that created the texture. The process is further refined trough
user interaction, with a good visual match among samples and
results, however the process is not completely independent of
the user and no control of local density is provided. Hurtut
et al. [3] present a statistical approach, where the texture is
modeled as a function that can be replicated by the algorithm
used on the synthesis step, generating a different distribution
but with similar parameters. The input is also a collection of
elements, and the range of images that can be synthesized is
larger than in previous work, with some issues to synthesize
regular patterns. Their work greatly improves previous results,
since they use a perception-based gathering of geometric
properties from the sample, and use this in a multi-point
statistical synthesis step.

We share the same goals and overall approach of these three
works [3], [4], [5], merging procedural growth of texture and
local density control and obtaining visually similar results as
previous works, but also, our method is applicable to colored
textures and good results are generated for a wide range of
textures, such as regular, near regular, irregular and stochastic.

III. CLASSIFICATION AND SYNTHESIS

A. Overview

In this section, we detail our method, which has two main
parts: classification and synthesis. The user will provide a
sample input image and the desired resolution of the resulting
pattern. The sample image is assumed to be a collection of
elements, each one described by vector data. In the classifi-
cation part, the elements from the input sample are grouped
together into collections according to similarity measures, such
that ideally, any two elements of the same group should be
visually similar. From this resulting data, important features,
illustrated in Figure 2, are evaluated. The features are used to
control the synthesis and correspond to the minimal distance
between pairs of distinct elements from two groups.

Fig. 2. Features evaluated for an illustrative example. Here, the elements were
grouped into two distinct groups, curve and circle. In this case, three features
are evaluated. The smaller distance between distinct circles (A), distinct curves
(B), and circles and curves (C).

The synthesis starts by dividing the target output image into
squared regions of appropriate size. A recursive procedure
starts by visiting a random region and placing a seed in a
random position on its interior. This seed is replaced by a
chosen element from the sample and new seeds are generated
accordingly to the relative position of the neighborhood of
this element on the sample. The list of seeds grows iteratively
until the target space is completely visited, in other words,
until there are no unvisited regions left. During the synthesis,
we keep a list of seeds located in the target image space.
This list is FIFO, i.e. the first seed from this list is extracted
and replaced by a reference to one element from the sample,
inserting new seeds at the end of the list. Therefore, the
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texture grows in a spiral order starting from the central seed.
If eventually the list of seeds becomes empty, a new seed
is randomly created into a random non-visited region. The
growth is illustrated in Figure 3, and shares many similarities
with the method proposed by [4]. The main difference is
the absence of underlying triangulation of the arrangement,
which will provide the control over the local density as will
be explained later.

B. Input classification

Unlike raster texture synthesis, our approach aims the ar-
rangement of elements located in the bidimensional space. Ini-
tially, such elements are ungrouped and defined only by their
own vector data. Thus, we must define and evaluate relevant
characteristics that will be used to classify the elements into
distinct similarity groups. The number of those characteristics
should be the least necessary to fully identify each group the
pattern, much as a human observer would use a limited number
of characteristics to naturally identify groups.

We use the same approach of [3], classifying elements
within two stages. The first stage corresponds to the clas-
sification by area, and the second stage corresponds to the
remaining characteristics, reduced by PCA to avoid high
dimensionality issues. We included in the second stage the
grayscale conversion of the RGB color of each element, in
order to be able to process colored textures as well. Also,
we made a simplification of the process. Instead of using A
Contrario method to find relevant modes on the histogram,
we use a simple 5 bins histogram, where each non-empty bin
will become a group itself. Five bins were chosen as an initial
guess due to the visual observation of the histograms generated
for all tested samples. In practice, this number was enough
to classify all samples with straightforward implementation,
although for a few patterns there are over categorizations.

Here, we present the classification step. First, the 5 bins
histogram is evaluated from the areas of each element. If
the bin is empty, nothing is done. When the bin contains 12
elements or less, the same number used on previous work [3],
it is considered a group by itself. If the bin contains more
than 12 elements, those elements are further classified. On the
second classification, dimensionality reduction with PCA is
applied on the remaining characteristics, including grayscale
color, and the histogram of the resulting data is evaluated.
Again, the histogram contains 5 bins, and each non-empty
bin will become a distinct group. Figure 4 shows the steps of
classification for one sample. It was verified that this simplified
procedure is enough to obtain good results not only with the
samples from previous work, but also new complex ones, as
it will be shown later in the results.

C. Spatial features of the pattern

During the positioning of elements on the target space,
spatial features of the input sample are used to guide the
synthesis. Those features represent spatial restrictions that the
new pattern must follow in order to maintain the overall
appearance of the input sample. In other methods, those

features are codified into the triangulation of the arrangement
or in the parameters of a statistical model. In our method, they
are defined by the following functions:

d(x,A) = min{d(x, y)|y ∈ A, y 6= x}

d(B,A) = min{d(x,A)|x ∈ B}

where d(x, y) is the Euclidean distance between the center of
two elements x and y, and A and B are groups. We evaluate
the function d(A,B) for each pair of groups and also, we
evaluate all the d(x,A) for each element x. Each element
x will contain its own table of features to be used later,
during synthesis. More features could be added, but this would
increase the computational cost, and also make the result less
controllable. In this work, these features are used to control
the local density of the texture, as we will show later.

D. Covering The Target Space

On raster texture synthesis, the target space is defined by the
resolution and the synthesis is concluded when all pixels have
been visited. Based on this idea, we set the target output size
as a parameter, but still remains the problem of knowing when
the synthesis is complete. We artificially create an underlying
grid by dividing the area of the target texture as a matrix of
squared regions, initially marked as unvisited, and use them as
our ‘pixels’. We define the edge of each region as the minimal
distance between elements such that it is small enough to
assure that the result will have none undesired holes. When a
new seed or element is included, the status of the respective
region is switched to visited. The synthesis is complete when
there are no remaining unvisited regions.

E. Seeds and Neighborhoods

Following similar definition from previous works, seeds
are locations that will reference copies of elements from
the texture. In our system, before being synthesized, seeds
may contain a reference value to a group found during the
classification step. When there is such reference, during the
synthesis, the best element will be searched only among
those contained on the referenced groups. When there is no
reference, the best element can be any one from the sample.

In our method, neighborhoods are circular regions. Similarly
to pixel-based synthesis methods, the size of the neighborhood
can be defined by the user. In this method, this parameter is
called the visibility radius of the neighborhood. We believe that
using this definition instead of the n-ring vicinity around the
central vertex on a triangulation is better, because in the second
case, neighborhoods could be extremely small or unnecessarily
big.

Since the sample input is static, the neighborhood of each
element can be previously calculated on the analysis step.
However, as the target texture grows, new elements are added
and the neighborhood of some elements may change. Because
of that, the neighborhood of each element is dynamically
updated as the synthesis progress.
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Fig. 3. Illustration of the local texture growth. Each seed is represented by a number, and the highlighted seed is the first on the list.

Fig. 4. The classification pipeline: (1) is the initial sample; (2) shows the result of histogram segmentation. The upper histogram is the classification by area.
The green column, with 9 elements, becomes a group itself and the red column, with 61 elements, is further refined. The white empty columns are ignored.
The lower histogram shows the refinement, were each of the remaining characteristics are reduced to 1 dimension by PCA. (3) is the resulting classified
sample. All the parameters, except for the number of bins, are the same as used by Hurtut [3].

F. Synthesis and Seeding

Initially, a seed is placed at a random location inside any
of the regions of the target space, and the texture is expanded
outwards substituting seeds by copies of elements from the
sample and placing new seeds around them. The element to
be copied is chosen based on neighborhood comparisons, and
the location of new seeds is defined from the relative position
of the neighborhood of the copied element. All the seeds are
stored in a FIFO list, where the head contains the seed that will
be replaced at the next iteration, and new seeds are inserted
at the tail of the list.

When a seed is being processed, we search in the sample
texture for the best matching element, which represents the
element whose neighborhood is the most similar to the vicinity
of the seed. For that, we use a metric that returns a value
between 0 and 1, representing the dissimilarity between two
distinct neighborhoods, with no restrictions on the number of
elements on them. The reference for the group contained on
the seed, is used to restrict the search into one specific group.
Once the best matching is found, we replace the seed with a
copy of this element and create new seeds using the relative
position of its neighboring. In order to be accepted, seeds must
be checked whether will violate any of the minimal distances
previously evaluated from the sample. Only if the seed pass all
tests, it will be accepted. This process is illustrated in Figure
5.

Using this approach it is possible to control the density of
elements on the result. Instead of using exactly the mentioned
features, we multiply them by a density parameter. When
this parameter is less than 1, closer pairs of elements will
be accepted on the final distribution, and therefore, a more
crowded texture will be created. When this parameter is greater

than 1, a coarser texture will be created. Figure 6 shows the
effect obtained by varying this parameter.

Fig. 5. Seeding process: On the left, we have the current arrangement being
synthesized. (A) marks the position of the seed extracted from the head of the
list. We search for the best matching element throughout the sample texture.
In this case, it must be one element from the group with curves and it was
found to be the highlighted curve. We extract the neighboring elements (I)
and create four new seeds from them (II). This set is pasted over the seed
(A), and on the right arrangement we see that only seed 1 will be accepted.

G. Distance Metric For Neighborhoods

In order to compare the similarity between two distinct
neighborhoods, raster texture synthesis methods use the L2
norm. We also need to compare neighborhoods, but because
this synthesis method deals with distributions on the plane
instead of regular grid of pixels, some difficulties arise: the
metric should be able to compare two neighborhoods with
different number of elements, and the metric should consider
the position of each element on the two-dimensional space.
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Fig. 6. Varying density along the horizontal axis. Sample and result.

Fig. 7. Distance metric for neighborhoods, on artificial examples. We have the
comparison between two pairs of neighborhoods, AB and CD. Neighborhoods
A and C are exactly the same, while B and D differ only on the position of
one curve. Neighborhoods are illustrated together in the same frame, with the
smallest distances evaluated for each element (before normalization). We see
that only the displacement of one of the elements, bringing it closer to another
element from the other neighborhood, makes both neighborhoods more similar
and this effect is easily detected by the final value of the metric. A lower value
denotes a more similar pair of neighborhoods.

The metric of this method is normalized to a value between
0 and 1 and gives the dissimilarity between two neighborhoods
I and J as follows. For each relative location i of the elements
on I , we use the smaller Euclidean distance between i and j,
where j is the relative location of the elements on J . When
the element at j is from a different group of the element at
i, it is ignored. If we reach the end of the list of elements
from J and no distance was evaluated, then we consider the
element i as too far and set the value to 1. Otherwise, we
normalize the found value by the diameter of the visibility
window. Once all those values are evaluated for the elements
of I , we similarly evaluate the distances for the elements on
J . The final overall dissimilarity will be the average of all
those values. A value of 1 represents a completely different
neighborhood, while a value of 0 represents an exactly equal
neighborhood. Our metric is illustrated in Figure 7. Special
care is needed for the neighborhoods near the edges that are
often incomplete. To avoid the edges, we consider only those
elements from the sample whose visibility range does not cross
the sample boundaries.

In Barla [5], two neighborhoods are intersected and only
the paired elements are considered. If another neighborhood
contains the same distribution for the paired elements, but
different distribution for unpaired elements or even a different
number of them, the metric would return the same value.

Ijiri [4] used a similar metric. The main difference from
this new metric is that none of the neighbors are discarded
and the resulting value is sensitive to small variations on
the distribution. We believe that for being more sensitive
and because no element is discarded, the metric can capture
better the distance value between neighborhoods with distinct
number of elements.

H. Choosing The Best Matching

We use the same approach from raster texture synthesis,
building an ordered list with the best matching elements and
using the corresponding dissimilarity value to order the list.
Then, the best element is randomly chosen from those whose
dissimilarity factor is smaller than 1.1 times the smallest factor
obtained. To avoid repetitions, or growing garbage, for each
element we count how many times it was already chosen, and
use this value to modify the dissimilarity factor. The new factor
is log(1 + n) ∗ d where n is the number of times the element
was chosen and d is the regular dissimilarity. We use log to
avoid the quick growing of the factor.

(a) (b)

(c)

Fig. 8. Given a sample (a) and comparison between results with different
values of visibility (b) small and (c) large.

I. Patches

We used the same idea of patches of texture from raster
synthesis to improve the efficiency of our method. Instead of
copying only one element from the sample, we will try to copy
a cluster of elements. We define a parameter – patch size –
which will split the visibility region into two parts: inner and
outer. The inner part will represent the patch region, where,
instead of seeds, the elements will be copied directly onto
the target. The same check for violation of features is made
before any of those elements are accepted but they do not
generate new seeds. In Figure 9 we illustrate the influence of
this parameter varying between 0 and 1 times the range of
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visibility. This possibility greatly improves the computational
cost, and allows similar quality in the visual results.

(a) (b)

(c) (d)

Fig. 9. Given a sample (a) and varying the patch size 0%, 50% and 100%,
(b, c, d), respectively. Notice the same quality in the visual result.

IV. RESULTS AND DISCUSSION

We have tested our method on a variety of samples and
values for the available parameters. Here we illustrate some
of these. The number of elements on all samples vary from
10 up to a couple hundred, and in the worst case scenario,
the time required strongly depends on the efficiency of the
classification. Since the search for the best element is done
through all the elements of one group on the sample, if
the population of the group is too large, the synthesis can
take more than one minute to be completed. However, the
average sample presented here could be processed in times
varying from real time, up to 10 seconds on a 2.10Ghz dual
core processor with 2.0GB RAM. In Figure 1 we illustrate
synthesis results for the four general types of textures: regular,
near-regular, irregular and stochastic, accordingly to a rough
classification presented in [24]. Our system presented good
results for all those types of texture, being near-regular the
most difficult to handle. This same figure illustrates a result
with the color being one of the discerning characteristics. In
the chess texture we also illustrate the capability of the method
to synthesize regular patterns. The introduction of color on the
second stage of the classification step provided good results
for the used colored samples, and did not had influence on the
previous black and white textures. In Figure 8 we show the
influence of the visibility range parameter on the final result.

Figure 10 shows a comparison between our results and
Hurtut’s [3], using many of the samples presented in their
work. Our model produces good results for irregular, near
regular and regular textures as well. We assess the visual

quality of both approaches very similar, given the visual
characteristics of samples.

In Figure 11, we show results obtained by our method
for hand-drawn geological patterns. Notice the continuous
variation of the inclination value of the elements on the
samples. This presents issues due to the use of histogram, since
the inclination value changes in a circular way, where elements
with 2π value have the same inclination of 0 valued elements.
Also, the lack of strong similarity between elements on pattern
(a) implies the necessity of a large number of groups. With
our implementation of the method used in previous work, those
patterns were not well classified, while with the simple 5 bin
histogram method, we had better results. Over-categorization
does not represent a big problem, but under-categorization will
affect negatively the results, especially in such patterns with
compacted long thin elements and no intersections between
them.

(a) (b)

(c) (d)

Fig. 11. Texture synthesis results for illustrative geological patterns.

V. CONCLUSIONS AND FUTURE WORK

We have presented a simple example-based method for syn-
thesis of patterns defined as 2D collection of vector elements.
Our solution is inspired on previous work, both on patch-based
texture synthesis and vectorial arrangement synthesis. This
method can produce good results from regular and irregular
distribution of elements in the samples, being near regular
patterns the most difficult to deal with. Other applications
could be explored, as animation synthesis for example. Also,
the method could be improved to deal with symmetry of
elements.

We plan to extend the model for synthesis over 3D arbi-
trary surfaces, and improve the direct synthesis of illustrative
patterns over 3D models taking into account tonal value maps
at different scales. Other areas of future work will include a
formal qualitative evaluation of the results by illustrators.
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