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While current image deformation methods are careful in making the new geometry seem
right, little attention has been given to the photometric aspects. We introduce a deforma-
tion method that results in coherently illuminated objects. For this task, we use RGBN
images to support a relighting step integrated in a sketch-based deformation method.
We warp not only colors but also normals. Normal warping requires smooth warping
fields. We use sketches to specify sparse warping samples and impose additional con-
straints for region of interest control. To satisfy these new constraints, we present a novel
image warping method based on Hermite–Birkhoff interpolation with radial basis func-
tions that results in a smooth warping field. We also use sketches to help the system iden-
tify both lighting conditions and material from single images. We present results with
RGBN images from different sources, including photometric stereo, synthetic images, and
photographs.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Deformation is a well-studied problem in computer
graphics. It started with warping and morphing methods
for images [1] and evolved into methods for deforming
3D triangular meshes, and more recently volume data
[2]. During image warping, it is important to contemplate
the 3D world. In fact, most images consist of projections
of 3D objects. Each pixel stores a color, that is the result
of a complex illumination process overlooked in traditional
image warping. Current image deformation methods only
aim at transforming geometry consistently, paying no
attention to photometric aspects. In some cases, especially
for small deformations, lighting may be wrong but percep-
tually acceptable. In other cases, lighting is wrongly
depicted and perceived. We propose the use of information
from albedo and normals to design an illumination-aware
. All rights reserved.
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deformation method. Our results are visually consistent
regarding geometric and photometric aspects, even under
extreme deformations (Fig. 1). Our method can be applied
to change shape and light not only in static images but also
in dynamic settings such as image-based animations and
interactive images for electronic magazines.

Our method is entirely image-based, not relying on 3D
models at any stage. This is an advantage since image
artists may not have modeling skills. Our technique is only
made possible due to advances in vision that introduced a
new 2.5D image data structure: the RGBN image [3], a
photo in which each pixel contains not only color but also
a normal vector. RGBN images can be obtained in several
ways. First, they can be the result of a 3D rendering process
or simulation. A second approach is photometric stereo [4],
which uses multiple input images from the same view-
point, each image illuminated with different but known
light positions. Recent user-assisted approaches [5–7]
allow obtaining RGBN images even from single images.
Finally, in Lumo [8] Johnston creates normals for cel
animation.
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Fig. 1. Our system takes as input albedo and normals (a), and a shaded image (b). In addition, the user makes two kinds of sketches (b): warping sketches
specify a region of interest and its deformed shape; lighting sketches help the system estimate lighting and material. We relight the warped result (c) and
obtaining objects illuminated coherently (d). Simple color warping stretches the original highlight and misses some shadows. With relighting, we recreate
fine highlights and shadows in the right places. Three sequential deformations were used.
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We chose to work with RGBN images because they en-
able relighting, a key component of our illumination-aware
deformation method. We provide the user with a simple
sketch-based interface to specify a deformation (Fig. 1b).
Unlike previous methods, we transport not only the colors
but also the normal vectors during the deformation. With
the warped RGBN in hand, the system can relight the
new image using the appropriate illumination. Sketch-
based tools allow to the user to specify these lighting
conditions intuitively. Additionally, we only relight the
image in the deformed region; and therefore, only local
illumination needs to be detected.

Our main contributions are:

� a quality hybrid (interactive and automatic) image
deformation pipeline that consistently warps both
geometry and illumination components (highlights,
midtones, and shadows) of the source image;
� a sketch-based method that specifies displacement

fields with region of interest control on images, under
a variety of user-defined paths;
� a novel warping method that employs RBF-based Her-

mite–Birkhoff interpolation to implement generalized
warping constraints, including Jacobian restrictions, to
produce smooth fields.

In addition to RGBN images, these methods are also ori-
ginal for traditional color images.
2. Related work

2.1. Sketch-based deformation

Image deformation methods have attracted the atten-
tion of researchers and there are many different solutions
regarding control. Some approaches use control points or
straight lines [9,10]. However, these are usually inconve-
nient for specifying curve restrictions, requiring too many
points.
Sketching from the user [11] is a more natural way to
communicate deformations in images [12–14], because ar-
tists typically want to define complex shapes intuitively
and quickly. Weng et al. [14] use only source sketches
and adjust a B-spline for control point manipulation. Our
approach is most similar to methods that use sketches
for defining both source and destination points [12,13].

When warping normals as in our method, a C1 warping
field is required to avoid creating seams. Igarashi et al. [10]
calculate a deformation on a mesh and linearly interpolate
in the interior of the triangles. This results in a discontinu-
ous Jacobian, that is constant inside each triangle. Fang and
Hart [12] interpolate the field from the sketches using a La-
place equation, resulting in discontinuous derivatives on
the sketches themselves.

Approaches based on MLS [9,14] and the method of Eitz
et al. [13] seem to result in smooth warping fields. How-
ever, they provide little control and smoothness when try-
ing to define a region of interest (ROI) for deformation. In
our sketch-based interface anything outside the ROI de-
fined by the user is left unchanged. Our system builds a
warping field which is C1 even on the desired part of the
border of the ROI. Previous methods would be appropriate
for warping normals only on global and full-object defor-
mations, while our approach builds upon RBF-based gener-
alized interpolation [15–17] to ensure both the prescribed
sparse constraints and the smoothness in the ROI without
the need of additional parameters nor singular kernels [9].
Using the Bilaplacian operator would allow imposing posi-
tion and derivative constraints [18] as in our method.
However, we are unaware of the possibility of restricting
derivatives at some, but not all, points. This is possible with
our method and very important for ROI deformation.

Working with a ROI paves the way for image-based ob-
ject editing. Barret and Cheney [19] used local warpings for
object editing. They provide a complete tool including seg-
mentation methods to define objects and inpainting meth-
ods to fill disclosed background. Oh et al. [20] use image
layers with per-pixel depth as objects. Depth is used for
perspective transformations and texture corrections. Their
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methods support limited relighting, because they pay no
attention to existing light sources.
2.2. Light detection and relighting

Instead of depth, we work with normals because they
are easier to acquire. They can be accurately obtained for
both diffuse [4] and specular [21] materials using multiple
images. Additionally, normals can also be obtained from
single images [5,7,8].

Though these methods are able to recover scene geom-
etry, they often do not recover reflectance. Fortunately,
there are techniques to factor images into a product of
reflectance and illumination, together referred as intrinsic
images. This separation has long been studied [22] and
there have been many recent advances using multiple
images [23], machine learning [24], bilateral filtering
[20], or user-assisted approaches [6,7].

While intrinsic image separation together with shape-
from-shading methods are very useful, they are limited
in two aspects we must take into account for re-illumi-
nation: lighting and reflectance. We present a semi-auto-
matic method for detecting light and reflectance because
it is hard to achieve nice results with the fully-automatic
previous approaches. Schoeneman et al. [25] designed a
method to obtain lighting. They start with a full 3D
scene and find intensities for a fixed set of lights taking
into account any lighting phenomena. Ikeuchi and Sato
[26] find a directional light starting with a range scan
and a single image. Our method is similar to the latter,
since only normals are required under the directional
light hypothesis.

The second limitation is reflectance. The detected color
provides a reasonable diffuse albedo, but it fails to provide
more complex material properties, including specular
properties. Under uncontrolled lighting, there are methods
that acquire parametric BRDF from images [27]. They can
work with multiple [28] or single [29,30,26] images,
usually iteratively updating parameters according to ob-
served rendered differences. Most single images use many
iterations and thresholds to separate Lambertian from
specular regions. Our method is non-iterative, since the
user marks these different regions with sketches. Estima-
tion methods also vary according to the material
model used, from higher dimensional BRDFs [29] to the
Fig. 2. Light sketches (a) mark regions of highlights and midtones. Warping sketc
reveals the shape of the object (d).
Torrance–Sparrow [26] or Phong models [31]. We follow
approaches based on the Phong parametric model.

The first works with RGBN images focused on changing
color only. In Textureshop [32] the authors recovered nor-
mals from photographs, interactively tuning them and
then developed texture synthesis on the resulting RGBN
images. The normals are used to guide local distortions in
the synthesized texture. All their results were produced
under a single light hypothesis, as in our method. In addi-
tion to color synthesis, normal synthesis methods have
also been presented [33]. Toler-Franklin et al. [3] have
shown that many NPR rendering algorithms work with
RGBN images. To accomplish this task, they developed sig-
nal processing techniques for normals, like filtering and
derivatives estimation. Pereira and Velho [34] extended
the filtering methods and developed methods to design
features on RGBN images. They do not use warping on
RGBN images, only warping new features along a curve.
Loviscach [35] presented methods for combining and
warping normals, but only showed results with user-pro-
vided warping equations.In contrast to these works, we
apply free-form warping to the RGBN image itself.

Finally, Okabe et al. [7] present a user-assisted system
for relighting from single images. They use user input to
estimate an RGBN image and a light source. While in their
method the lighting changes while geometry stays the
same, in our method it is the geometry that changes.
3. Overview

We propose a sketch-based pipeline to deform images
using more than pixel color information. In our system,
we take as input three different buffers (Fig. 3a): the shaded
buffer, which is an input image containing colors that are
influenced by scene lighting conditions; and diffuse albedo
and normal channels, which specify the object’s texture and
geometry. Afterwards, assuming a constant material, we
use light sketches and all three buffers to obtain a local esti-
mate of specular properties, a single directional light and an
ambient illumination term (Fig. 3b) which are used to re-
light the final result. Additionally, warping sketches specify
a region of interest (ROI) and a deformation. These are used
to build the warping field (Fig. 3c) which is used to locally
deform the albedo and normal buffers (Fig. 3d). To obtain
the final image we relight the warped albedo and normals
hes (b) define the free-form deformation. Relighting with warped normals



Fig. 3. Our pipeline starts with three buffers and two types of sketches (a). We use the albedo, normal and shaded buffers together with the light sketches to
obtain a local estimate of material and original lighting (b). Meanwhile, we use the warping sketches (c) to build the warping field that is used to deform
normals and albedo (d). Using the light and material information, we relight the deformed buffers (e). We compose the original and synthesized shaded
images to obtain the final image (f).
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in the ROI using the estimated light (Fig. 3e) and compose it
with the rest of the original shaded image (Fig. 3f). The
warping field is built using Hermite–Birkhoff radial basis
functions (HBRBF) resulting in a smooth field necessary
for normal manipulation.

Our method can produce local or global changes accord-
ing to the input it receives. If it receives a full RGBN image,
arbitrary relighting and unrestricted deformations are pos-
sible. Nevertheless, our method was designed to work
under more harsh conditions. If albedo and normals are
only available in the ROI, our method can deform them
locally, keeping the rest of the image unchanged. In this
case, we are restricted to the original lighting conditions
to avoid dissonances with the unchanged part. Since work-
ing locally only brings additional complications, we focus
our presentation on this scenario. In the next sections,
we provide details of each step of our pipeline.
4. Light and material estimation

Even though ambiguities are present in most vision
problems, humans have little difficulty in inferring what
effects are caused by material or light variations over an
object [36]. Therefore, in our method, the user helps the
system estimate the local light and material. The light
sketches are used to label different regions (Fig. 2). The
first stroke marks a highlight region, a region where spec-
ular reflection dominates. The second stroke marks a mid-
tone region, a region that faces the light source but,
where specular reflection is very low. While these
sketches may not be in the ROI, it is important that they
represent the local lighting and material for the deforma-
tion. The exact pixels under the strokes are used as con-
straints for estimation.

We begin by detecting lighting and material specular-
ity. Our two-step solution is similar to that of Ikeuchi
and Sato [26]. First, our system detects lighting. Second,
it detects material specularity parameters. The method
consists of a series of linear equations, one for each pixel
in the regions previously specified by the user. We calcu-
late least square solutions to these two over-constrained
systems. All equations are derived from the following
simplified version of the Blinn–Phong shading model using
a single light source: i = qa + qi(d � n) + ks i(h � n)a.
(Regarding notation, bold letters denote vectors and the
qa product denotes a component wise product.)

The input images already provide the diffuse albedo q,
normal vectors n and the shaded image i. While the half-
vector h can be computed from the normals, other param-
eters remain to be found. First, we determine the single
light direction d and intensity i. We also assume that global
illumination can be modeled well by a constant ambient
light term a. These hypotheses are plausible because we
are only editing a small region or a single object.

The above equation should hold for each pixel and each
color channel. However, fitting it over an image is already a
non-linear problem that is made harder due to shadows.
For this reason, we ask the user to provide two sketches
marking highlights and midtones. This way, the problem
can be made linear in each individual region.

We start by estimating a single light direction and
intensity. To this purpose, we work on the midtone region,
where specular contributions are null. We estimate the
ambient term, in addition to the light, extending the ap-
proach of Ikeuchi and Sato [26]. Briefly, we use least
squares to solve the following linear system in six variables
(a, l = id):qk,cac + qk,cid � nk = Ik,c, where c indexes the color
channel and k indexes all pixels in the midtones region.

A restriction to the above equation is that the compo-
nents of the ambient term must be kept positive. While
we could have used a constrained least squares method,
we did not find that necessary since in most of our tests
the optimal ambient term already comes positive or is only
slightly negative.

Having found the light, we now turn to detecting the spec-
ular coefficient ks and the specular exponent a. We use a least
squares solution to the log-linearized equations: log ks þ a
logðhk � nkÞ ¼ log Sk;c , where Sk,c = (Ik,c�qk,cac�qk,ci(d � nk))/i.

Our approach is similar to that of Ukida et al. [31], but
we only have a single image. Hence, we assume the mate-
rial is spatially constant obtaining enough equations. In
addition, we assume that the specular albedo ks does not
depend on c. Detecting the highlight color would also be
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possible with a slightly different linear system because
there are many more equations than variables.Although
we have not experimented with this approach, this change
would be important for some materials.

Since highlights are usually regions of high luminance,
they tend to saturate pixel values. We ignore the pixels
that are possibly saturated, i.e., pixels with the maximum
value of 255.
Fig. 5. In addition to contours the user can sketch skeleton lines (a). If
these curves touch the boundary they induce a partition (b) of Xb (the
same thing holds for Kb) in two parts Xb

þ and Xb
� .
5. Warping field

Since we warp normals, our warping field must be C1,
i.e., its Jacobian must be continuous. In this section, we de-
scribe a sketch-based method with ROI control. Our meth-
od builds an inverse warping field, i.e., a field W that maps
a target region K to a source region X. Everything outside
X [K is unchanged (a discussion of the uncovered region
X�K occurs in Section 7). We introduce derivative con-
straints to produce a smooth field not only in the interior
but also in the border of the region of interest. Any other
method that produces C1 warping fields can be used
instead.
5.1. User sketches

The user begins by drawing the boundary Xb of the re-
gion of interest (Fig. 4). Next, he sketches a curve L specify-
ing the deformation. Most often, the curve L is open,
defining a new object silhouette. However, L can also be
closed; this results in regions that may be disjoint. In the
former case, L must start and end on Xb (Fig. 4a), inducing
a partition of Xb in two curve segments Xb

1 and Xb
2 (Fig. 4b).

The border of the destination region K is defined by joining
L and Xb

1 (Fig. 4c).
To increase control, the user can provide skeleton

curves Xs and Ks to constrain the deformation (Fig. 5a). If
the skeleton curves touch the boundaries (Fig. 5c), they in-
duce a partition of Xb (analogously Kb) in two parts Xb

þ and
Xb
� (analogously Kb

þ and Kb
�). Alternatively, if skeletons are

not provided, the user can directly partition Xb by marking
splitting points on the boundary. This partition helps the
user influence the sketch correspondence.

To create warping samples, matching proceeds by
pairing uniform samplings of corresponding curve seg-
ments, e.g., Xb

þ with Kb
þ. We found that this simple

scheme provides a good compromise between the num-
ber of curves and field control; however, more automatic
sketch-correspondence methods could be used [13,37].
(a) (b) (c)

Fig. 4. Processing of the input curves when L is open: (a) user input, (b)
We project the ends of L on Xb and break it in two parts Xb

1 and Xf
2 and (c)

we connect L with Xf
1 resulting in the region K.
In Fig. 6, we show the effect of using the skeleton lines
and partitioning the original sketches. Boundary and
skeleton sketches provide good control. For example,
the user can select between rotation-like and shear-like
fields (Fig. 7).

When connecting L to the correct Xb
i , care must be taken

to guarantee proper orientation. We induce an orientation
on the curve L by connecting its end points and using
clockwise orientation on the resulting polygon. Next, L is
connected to the Xb

i resulting in an oriented boundary Kb

of the target region K, say Xb
1.

All warping sketch curves are preprocessed by super-
sampling such that the maximum distance between con-
secutive samples is half a pixel. Afterwards, we apply
resolution reduction four times [38]. This filter is used to
get the overall shape of the curve and reduce noise from
the input method.

We build a displacement field by sparse interpolation of
sketch samples. Our samples are vectors starting in K and
ending in X (Fig. 4c). In particular, we start with samples
that map boundary to boundary and skeleton to skeleton.
Conceptually, we define a displacement field in the entire
image, by restricting the interpolated field to K and setting
zero displacements outside of K. Any C1 warping field in K
that interpolates these constraints will result in a continu-
ous warp in the entire image, except on the new silhouette
L. Notice that continuity on Xb

1 is a consequence of the con-
straints that fix it in place.

However, a continuous field is not enough, because a
non-smooth warp will result in discontinuous normals
(Fig. 8). While many interpolation methods can be used
to define C1 fields inside K, we impose derivative con-
straints on the samples of Xb

1 that result in continuity
of the derivative there. These more advanced constraints
are satisfied using Hermite–Birkhoff RBF interpolation. In
theory, since derivatives are only imposed on the sam-
ples, our field may not be smooth between the samples
of Xb

1. Nevertheless, in practice, we have observed that
the resulting field is sufficiently smooth for warping
normals.

5.2. Hermite–Birkhoff RBF warping field

In our system, we used a warping field computed by
Hermite–Birkhoff interpolation based on radial basis func-
tions [16]. Our constraints prescribe displacements at
given points and, at some of them, they also enforce C1-
continuity of a restricted warping field.



Fig. 6. On the left, arc-length correspondence failed, resulting in extreme compression in the head; on the right, the partition induced by the skeleton
curves led to a proper correspondence and warping.

Fig. 7. We can sketch rotation-like or shear-like fields.
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Formally, we are looking for a displacement field
F : R2 ! R2 such that F(yj) = cj, F(xi) = 0, and DF(xi) = 0,
where yj 2 L [Ks; xi 2 Xb

1; cj 2 Xb [Xs. The restrictions
on the Jacobian DF at the boundary points xi enforce C1-
continuity of the interpolated field at the boundary of the
region of interest, outside of which the field is supposed
to be zero. Notice that the sets xi and yj are disjoint.
Fig. 8. If the Jacobian is not restricted on the border, the field is not smooth, resu
continuous derivative was used.
These constraints arise naturally in our context and lead
to an instance of (multivariate and unstructured) Hermite–
Birkhoff interpolation, which, unlike Hermite interpola-
tion, does not require all derivative information at every
sample.

This generalized interpolation problem can be compu-
tationally solved by means of radial basis functions tech-
niques. First, notice that these constraints do not require
coupling between the component fields F1; F2 : R2 ! R2

which define F = (F1,F2). This reduces the vector problem
to two scalar problems defined by Fk(yj) = cj,k, Fk(xi) = di,k

and rFk(xi) = 0, k = 1, 2. Employing the generalized inter-
polation framework [15–17], we deduce appropriate forms
of linearly-augmented RBF-based interpolants for both F1

and F2:

FkðxÞ ¼
X

i

aiwðx� xiÞ � hbi;rwðx� xiÞi
� �

þ
X

j

cjwðx� yjÞ þ ha;xi þ b

where w(x) = /(kxk) for a suitable radial basis function
/ : Rþ ! R and ai; cj; b 2 R and bi; a 2 R2 are the fitting
lting in discontinuous normals (left) and shading (middle). On the right, a
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coefficients uniquely determined by the aforementioned
interpolation constraints along with the additional side-
conditions:

X
i

aixi þ bi� �
þ
X

j

cjy
j ¼ 0

X
i

ai þ
X

j

cj ¼ 0:

Thus, after choosing a suitable /, the fitting coefficients can
be computed by solving two symmetric indefinite linear
systems which only differ in their right-hand sides. Our
implementation employs an LDLT factorization of the sys-
tem matrix which is used to fit both Fk. We found that LA-
PACK’s xSYSV LDLT routines provide a better balance in
performance/memory/stability requirements than the
alternative xGESV and xSPSV (also from LAPACK), which
implement a general LU decomposition and a packed
LDLT-factorization respectively.

There are several alternatives for choosing a suitable
basis function /. Since we are interested in warping fields
at least C1 to correctly propagate normals and to approxi-
mate the smoothness condition on the boundary of the re-
gion of interest, we seek a / inducing a w at least C2, since
the interpolant contains first-order differentials of w. We
employed the globally-supported basis function /(r) = r3,
which has interesting variational properties, as studied
by Duchon in his seminal paper [39]. Consequently, our
method has no additional interpolation parameters.

It is noteworthy that, due to the use of Duchon’s basis
function, we need the polynomial part in the interpolant
to ensure solvability of the resulting linear system.
Although we could drop this affine term if we used Wend-
land’s functions [16], we found that Duchon’s provides bet-
ter warping fields without noticeable degradation in
performance due to the additional polynomial term. More-
over, although Wendland’s functions are compactly-sup-
ported, the resulting system would still be dense because
the associated radius parameter would need to be large
due to the sparsity of our samples.

Our vector field interpolation reconstructs a displace-
ment field F. From it, we obtain a warping W:K ? X,
W(x) = x + F(x) which is used for deformation in the next
section.
6. Deformation

Having built the warping field W, we can use it to trans-
port colors and normals. First, we reconstruct these attri-
butes with bilinear interpolation. Transporting color
amounts to using the field W to reference a point in X. This
simple solution fails for warping normals. If we relight the
final image with copied normals, we will obtain traditional
color warping results assuming there are no estimation er-
rors. Normals have to rotate, twist and stretch according to
the warping field. If we had a 3D warping function, we
could transform the normals by the transpose of the 3D
Jacobian. However, all we have is a 2D warp. Our solution
is to look at normal vectors as 2D gradients and to warp
gradients following the work of Pereira and Velho [34].
Given a unit normal n = (n1,n2,n3), we first convert it to
a gradient using �n1/n3 = zx and �n2/n3 = zy. Next, we warp
the gradients. Given a gradient field g, define g� : K! R2,
g⁄ = g(W(x)) � DW(x). We say g⁄ is the field g warped by
W. In other words, transfer the gradient vector with the
warping field and multiply it by the 2D warping Jacobian.
This gradient warping rule is equivalent to transferring
the heights directly because of the chain rule:
g⁄ = g � DW =rz � DW =r(z�W). Finally, we obtain the
normal back using:

nðx; yÞ ¼ ð�zx;�zy;1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

x þ z2
y þ 1

q

Computationally, we approximate the Jacobian by finite
differences in K. This was done for simplicity only, as we
could also have calculated it analytically from the field
expression [40]. In short, to warp normals we first convert
them to gradients, warp the gradients, and finally convert
them back to normals.

7. Local relighting and composing

After estimating lighting and material, and obtaining
the new albedo and geometry represented by normals,
we have all we need to relight the final result. Global
relighting is straightforward. However, it is important to
discuss the case of local manipulation, which results in
changes only in the region K while the rest of the image
is kept unchanged. A trivial solution would be to calculate
the new color of each pixel in K under the detected light-
ing. However, this solution is too dependent on accurate
estimates and is not robust to errors. For instance, unless
we detected precisely the original conditions, we would
create noticeable seams.

During relighting, we calculate shading for two images:
the warped and the original image. The reason we relight
the original image is to calculate a residue. This residue
consists of the colors that are not predicted by our shading
model and estimates (Fig. 9). It is the difference between
the original image and the image estimated by our model.
We proceed with warping this residue simply by trans-
porting colors. The warped residue image is added to the
final result. In this way, we guarantee that no seams will
be created due to lighting differences (Fig. 10).

The goal of all previous estimation steps is to produce a
residue that is as close as possible to zero. Nevertheless,
besides lighting and material estimate errors, reaching
zero may not be possible because of global illumination ef-
fects. Therefore, this procedure is essential.

Regarding the final composition, two different cases
must be considered to guarantee a seamless result in the
border of K. In the first case, since points on Xb

1 are not al-
lowed to move, the color transition is already continuous.
In the second case, points on Xb

2 do move. However, these
points usually lie on the border of an object, where the ori-
ginal image was already discontinuous. When the points
are not on an object border, blending methods should be
used. For these cases, we output an alpha mask with the
known seams based on the user’s sketch lines.This mask al-
lows manual or automatic blending to be performed.In our



Fig. 9. The shaded image is decomposed into an estimated shaded and a residue image.

Fig. 10. The residue is recombined after warping and relighting. It makes the method robust to light detection errors, avoiding artifacts (left).
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examples, there are small artifacts as a result of using a
mask derived from the sketches, as can be seen by zooming
in. One exception is Fig. 11, where we show how a more
refined alpha mask can be provided by the user.
Fig. 11. Steps of the final composition. The original image (a) could be composed
For improved results the user can use a more sophisticated alpha channel (d) a
The user may decide to move or shrink the object which
results in disclosure of an unknown background. We find
this region using set difference: C = X�K. While in all re-
sults in this work we have filled C manually, automatic
directly with a naive alpha channel (1 inside K, 0 outside) as in (b and c).
nd inpainting (e) to obtain the final composition (f).



Table 1
The execution time of our system is dominated by the evaluation of the field. Column samples denotes the total samples used, while column Hermite denotes
how many of these had derivative restrictions. All the results were generated on a single core of a 2.66 GHz Intel Xeon.

Image # Samples # Hermite # Pixels Time (s)

Box (Fig. 15) 46 24 31k 3
Reservoir (Fig. 15) 33 0 76k 4
Sphere (Fig. 8) 51 0 53k 4
Sphere (Fig. 2) 51 26 53k 7
Helmet (step 1) (Fig. 1) 68 40 101k 19
Helmet (step 2) (Fig. 1) 70 42 107k 21
Soldier (Fig. 14) 81 23 117k 24
Ruins (Fig. 20) 87 29 124k 25
Helmet (step 3) (Fig. 1) 87 57 147k 33
Zebra(Fig. 12) 91 0 141k 35
Hammer (Fig. 16) 130 19 169k 37
Squirrel(Fig. 11) 133 33 282k 58
Pine (Fig. 19) 155 0 340k 70
Zebra (Fig. 12) 91 74 141k 74
Penguin (Fig. 6) 110 70 314k 80
Penguin (Fig. 6) 136 70 314k 86
Shell (Fig. 13) 155 0 556k 112
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inpainting techniques can be used instead [41]. In Fig. 11,
we show an example, where composition was performed
with manual inpainting and a commercial image manipu-
lation program to generate the alpha mask.
8. Results and discussion

Having presented the full method, we now discuss
some results. We made experiments with albedo and nor-
mals from different sources like photometric stereo data-
sets (hammer, shell, pine, helmet, and soldier), synthetic
models (sphere), and single photographs (ruins and box).
We have also made experiments with color only deforma-
tion (zebra, penguin, and reservoir).

Even though the fitting stage of the interpolation
involves solving a linear system, it is very fast because
the number of variables is of the order of the number of
samples. For all examples, the execution time of the sys-
tem is dominated by the HBRBF field evaluation, usually
taking a few seconds (Table 1), because that the RBF field
Fig. 12. Smoothness in the border of the ROI is not useful only for normal war
generate smooth color transitions (right). (For interpretation of the references to
article.)
must be evaluated per-pixel. The resulting complexity is
O(MN), where N is the number of pixels and M is the num-
ber of samples. Better performance could be obtained by
only evaluating the field in a coarser grid [9] and using cu-
bic interpolation for preserving smoothness. In addition,
warping time is larger when using derivative constraints
(Table 1) because these constraints require a slightly more
complex interpolant that takes longer to evaluate. Light
and material estimation are very fast steps involving only
the solution of linear systems of up to six variables. In
addition, the normal deformation and subsequent relight-
ing operations are also fast.

The skeleton curves offer the user additional informa-
tion about the geometry of the warping, as illustrated in
Fig. 6. When these curves are used, the internal samples
guide the warping towards local rotations, and also the in-
duced partition improves sketch correspondence. In
Fig. 15, we can observe the same technique used on a res-
ervoir engineering illustration. In this case, content within
a ROI is exaggerated by distortion as guided by the
ping. Without derivative constraints the stripes bend abruptly (left). We
color in this figure legend, the reader is referred to the web version of this



Fig. 13. Full object deformations can also be achieved by specifying a new silhouette which is a closed curve.
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skeleton curves. This creates emphasis for improving the
visualization and it is inspired by traditional illustration
techniques [42]. Fig. 12 shows how smoothness in the
ROI is essential for color warping. The zebra’s stripes break
abruptly if derivative constraints are not used.

The perfect scenario for our pipeline is when we have
complete and precise information about albedo and
Fig. 14. Results of deformation using our system in a Chinese statue: the result
shaded image together with user sketches (bottom).
normals of the scene. As expected, the photometric stereo
datasets give our more expressive results. Comparing
Fig. 16a and b, we observe the correctness of shadows
and highlights. The same comparison can be done in
Figs. 1, 2, and 14, where we can see the importance of high-
lights and shadows to communicate volume. Our system
correctly generates shadows in regions that are not facing
without relighting (left), with relighting and residue (right), the original
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the light. However, since it only uses local information, it
cannot generate cast shadows. In Figs. 13 and 19, we show
full object deformation using closed silhouette curves.

In Fig. 20, our input consists of a single photograph of
ruins. Neither albedo nor normals are available. However,
Fig. 15. Curvature of reservoir layers is greatly exaggerated

Fig. 16. Simple color warping results in wrong shadows. This lighting pattern w
lighting. With relighting, we recreate the proper shadow. (For interpretation of th
version of this article.)

Fig. 17. The detected light was stronger than it should have been. Recombining t
effects. (For interpretation of the references to color in this figure legend, the re
to warp the tower the user only had to inform these locally.
The albedo was found by adjusting the illumination manu-
ally in an image editing tool. This example shows a sce-
nario, where it is easy for the user to directly inform the
RGBN image. While the original image only had two levels
to bring emphasis in the visualization (photo: Statoil).

ould require a light in the middle of the image, which is not the original
e references to color in this figure legend, the reader is referred to the web

he residue reduces detection errors and even captures some color bleeding
ader is referred to the web version of this article.)



Fig. 18. The first sketch has close sheets which results in close samples with very different displacements. To satisfy these conflicting constraints, the
interpolation introduces distortion. The second sketch presents an improved result but still with too much shear. The dark cyan pixels represent points from
outside the original image. Original image and sketches are shown in Fig. 19. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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of shading, after warping, there are many different possible
normals and shading values. Our method generates a result
that presents all these variations. In all our examples, light-
Fig. 19. Full object deformation.
ing and specular albedo were detected automatically from
the sketches, except for this image because of the lack of
normal variation.

If scene geometry is simple enough, the user can man-
ually specify normals and albedo in the whole scene
(Fig. 17). In addition, this experiment shows the impor-
tance of the residue for correcting light detection errors
and it even includes global illumination effects in our final
composition, such as color bleeding.

In short, the results show many different scenarios con-
cerning the effect of relighting after an image deformation.
There are scenarios of large contrasts, where relighting
makes a big difference. This is the case for the hammer
(Fig. 16). Frequently, shading and highlights are the only
shape cues present in the interior of an object. While con-
tours may provide the overall scene and object informa-
tion, they may not inform the actual shape (Fig. 2). In
addition, there are cases, where the changes made possible
by relighting are subtle. Even so, we believe the correct de-
tails produced by our method are important (Fig. 1). Final-
ly, we understand relighting is not always necessary after
an image deformation. This is specially true for less
dramatic lighting conditions (Fig. 12).
9. Conclusion

Our contribution in this work is a sketch-based method
to deform images that does more than simply transfer col-
ors. Our method generates results that appear to be photo-
metrically consistent. By relighting the warped image, we
can generate new highlights, shading and shadows, where
necessary. To support relighting, we have developed a
method to seamlessly deform RGBN images. We have
shown examples of our method working both locally in



Fig. 20. Only deformations on the tower are possible, since the user did not provide background normals.
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single photographs and globally with photometric stereo
RGBN images.

The main limitation of our method is its assumption of a
local shading model. For this reason, it cannot warp global
illumination effects like shadows and inter-reflections cor-
rectly (Fig. 17). Secondly, since we use the Jacobian of the
warping, it is desirable to build warping fields that have
derivatives of guaranteed full rank. However, ensuring
rank is related to avoiding fold-overs, known to be a hard
problem. In addition, the field interpolation result is very
dependent on the field samples. If the arc-length corre-
spondence fails to capture user intent, it will result in a dis-
torted warping field. Additionally, since we first build a
global interpolant and later restrict it to the ROI, our meth-
od suffers with close sheets (Fig. 18). This problem could
be avoided by the user if he creates the final deformation
using more than one step, as we show in Fig. 1. Finally,
RGBN images have less information than a full 3D model,
as a result, our method only handles planar deformations,
depth changes are not possible.

In future work, we intend to use our method in other
applications, including warping of vector fields other than
gradients. Moreover, by further exploiting the Hermite–
Birkhoff interpolation theory with RBFs, more elaborate
derivative restrictions can be used for much more than
boundary restrictions. For instance, they could be used to
specify local rotations and stretches, thus coupling the sca-
lar fields which define the warping, especially if integrated
in a friendly user interface. Finally, we would like to extend
our method to image-based animation systems having as
input either photographs [43] or drawings from cel anima-
tion pipelines as in Lumo [8]. The changes in shading that
our method allows would provide strong cues for shape
and motion.
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