
Computers & Graphics 35 (2011) 43–53
Contents lists available at ScienceDirect
Computers & Graphics
0097-84

doi:10.1

� Corr

Aplicad

E-m

smcosta

lhf@imp
journal homepage: www.elsevier.com/locate/cag
Technical Section
Shape and tone depiction for implicit surfaces
Emilio Vital Brazil a,b,�, Ives Macêdo a,b, Mario Costa Sousa b, Luiz Velho a, Luiz Henrique de Figueiredo a

a IMPA - Instituto Nacional de Matemática Pura e Aplicada, Brazil
b University of Calgary, Canada
a r t i c l e i n f o

Available online 12 November 2010

Keywords:

Point-based NPR

Computer-generated stippling

Non-photorealistic rendering (NPR)

HRBF Implicits

Variational implicit surfaces

Hermite interpolation

Radial basis functions
93/$ - see front matter & 2010 Elsevier Ltd. A

016/j.cag.2010.09.017

esponding author at: IMPA - Instituto Nac

a, Brazil. Tel.: +55 2125295080.

ail addresses: emilio@impa.br (E. Vital Brazil)

@ucalgary.ca (M. Costa Sousa), lvelho@impa.

a.br (L. Henrique de Figueiredo).
a b s t r a c t

We present techniques for rendering implicit surfaces in different pen-and-ink styles. The implicit models

are rendered using point-based primitives to depict shape and tone using silhouettes with hidden-line

attenuation, drawing directions, and stippling. We present sample renderings obtained for a variety of

models. Furthermore, we describe simple and novel methods to control point placement and rendering

style. Our approach is implemented using HRBF Implicits, a simple and compact representation, that has

three fundamental qualities: a small number of point-normal samples as input for surface reconstruction,

good projection of points near the surface, and smoothness of the gradient field. These qualities of HRBF

Implicits are used to generate a robust distribution of points to position the drawing primitives.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Pen and ink illustrations, whether with traditional or computer-
generated techniques, provide several important perceptual cues
such as relationships between light and dark, shape, pattern and
edge depiction, drawing direction, focus, and gradients of detail and
texture. Three key elements are essential for effectively conveying
these perceptual cues: where to place drawing primitives, how

many to place, and how to draw them [1–5]. In this paper, we
present methods that approximate traditional ink-based rendering
techniques for depicting shape and tone perceptual cues, suitable
for non-photorealistic rendering (NPR) applications using implicit
surfaces as the primary object representation (Fig. 1).

Implicit surfaces provide important, mathematically precise infor-
mation about surface properties, useful for answering where and how

many primitives to draw across the surface. Implicit surfaces allow
global calculations such as point pertinence (i.e., whether a point is
within the surface volume) and distance evaluation, and at the same
time, also allow obtaining local differential properties, such as
normals and curvature. This brings advantages over other types of
geometric models. To instantiate our pipeline, we use the recently
introduced Hermite radial basis function (HRBF) Implicits which
interpolate point-normal data to reconstruct an implicit surface [6].
HRBF Implicits provide a simple and compact representation, requir-
ing only a few number of point-normal samples to reconstruct quality
implicit surfaces. In addition, the good behavior of HRBF Implicits
ll rights reserved.

ional de Matemática Pura e

, ijamj@impa.br (I. Macêdo),

br (L. Velho),
allows performing all the general implicit surface operations using
simpler and more efficient algorithms, even for complex models.

The main contribution of this paper is on applying NPR
techniques directly over implicit surfaces, bringing important
benefits such as consistent and good projection of points, con-
trolled placement and distribution of drawing primitives (for
artist-driven shape and tone depiction), simple metaphors for style
control in pen and ink renderings of implicits, and real-time
interaction with the rendered model.
2. Related work

Different works have proposed NPR techniques for implicit
surfaces, addressing the problem of extracting contours (silhouettes,
feature curves) and approximating different traditional rendering
styles including pen and ink stylized rendering, hatching and stippling
[7–12], feature line extraction and drawing [13–19], painterly
rendering [20], tone-based clip art [17], and mixed media [21].

Bremer and Hughes [7] presented an approach to extract and
trace silhouettes incrementally from analytic implicit functions.
Short interior ink-based strokes are also positioned using succes-
sive ray intersection tests, including hidden-line removal (HLR).
Foster et al. [9] extended these tracing and particle-based techni-
ques by providing additional options for stroke stylization and
specific interior stroke placement strategies on complex hierarch-
ical implicit models. Techniques for rendering sudden blends and
CSG junctions are also presented. Jepp et al. [10,11] have further
extended this NPR framework using flocking techniques to manage
particle distribution and render additional surface contours in
different pen and ink stippling and curvature-based hatching.
Proenc-a et al. [18,19] also extended the approach presented by

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2010.09.017
mailto:emilio@impa.br
mailto:ijamj@impa.br
mailto:ijamj@impa.br
mailto:smcosta@ucalgary.ca
mailto:lvelho@impa.br
mailto:lhf@impa.br
dx.doi.org/10.1016/j.cag.2010.09.017


Fig. 1. Drawing steps of David’s head with our system. The silhouettes with hidden-

line attenuation (left); completing the tone depiction by adding more stippling

marks and enhancing interior contours with a white halo (right). The model has

4096 samples, 700 K render points and with CPU rendering at 9 fps.
Fig. 2. Overview of our pipeline (left to right), seed points are placed across the

surface enabling further placement of render points, which are subsequently used to

modulate tone and shape depictions.

E. Vital Brazil et al. / Computers & Graphics 35 (2011) 43–5344
Foster et al. [9], by extracting and rendering suggestive contours over
point-set MPU implicits. One particular strategy is to project particles
from a base mesh onto the implicit surface and model the strokes
using this particle distribution. This approach was used by Elber [8]
who also presented several methods for ink-based stroke rendering
effects. More recently, Schmidt et al. [12] adapted an approach where
low-resolution silhouette and suggestive contours are extracted from
a coarse base mesh approximating the smooth surface and incre-
mentally refined and projected to the implicit surface. Stippling and
HLR are also provided by adapting surfel techniques.

In our approach, we use a new representation, Hermite radial
basis function (HRBF) Implicits [6]. Our point distribution does not
require relaxation techniques, given that HRBF provides a good
projection framework and the users can manipulate the seed
placement directly. All our rendering primitives (silhouette con-
tours, stippling, hatching) are points. Rendering is performed
directly over the implicit model without requiring any intermedi-
ate representation. We provide a hidden line attenuation (HLA)
method, which approximates some of the visual elements of an
artist-generated visual construction, or scaffolding [12].
3. System overview

To obtain quality renderings of an implicit surface we require two
properties from its representation. First of all, we need the implicit
function not to vary too wildly close to the surface and that the surface
be at least C1, with readily available normal information. The first
requirement allows us to use simple methods to approximate
projections of points onto the surface and obtain good point
distributions when those points are close to the surface. From now
on, we will assume that we have these properties and that all points
on the surface have a well-defined normal vector at them; in Section 7
we discuss the details of the representation which we chose to use.

In the first step of our algorithm (Section 4), we place points onto
the surface which will be latter used as seeds to create more points
over the surface. The number and position of these seeds have a
direct impact on the quality of the final image. After we have
obtained a good distribution of seeds on the surface, a refinement
phase begins (Section 5), consisting of increasing two sets of points.
The first set contains stippling points, which do not follow any
specific direction and result in a well-distributed coverage of the
surface. The second set follows particular directions to create the
perception of short strokes. Finally, given a fixed camera position,
we classify the generated points (Section 6) as either front, back, or
silhouette and use this classification to define how the points are
rendered. Fig. 2 illustrates our pipeline.
4. Seed placement

The seed placement step is important to define the quality of the
final drawing, since the positioning of all subsequent points is derived
from the seeds. We employ a semi-automatic approach that starts
with a certain set of seeds that can be positioned with or without
direct user’s interaction. Before we continue talking about seed
placement, we need to discuss the representation for the implicit
surfaces. There are many ways to define implicit surfaces and notable
examples are the BlobTree [22], piecewise algebraic surface patches
[23] and convolution surfaces [24]. One compact representation for
implicit surfaces can be derived by choosing a suitable interpolation
method and use samples to define the surface. Our system employs
Hermite samples (points and normals) and radial basis functions for
interpolation (Section 7). In order to automatically create a set of seed
points, we employ two different techniques. The first requires
samples on the surface, while the other is more general and can be
used for an implicit that does not have previous points on it.

The strategy that uses the samples themselves as seeds works well
because it does not require projection of points onto the surface
(which may be an expensive process). However, this strategy is only
recommended when the samples are well distributed over the
surface, which is typically the case when data is sampled from a
regular parametrization or a mesh. On the other hand, when we do
not have samples over the surface or when these points are not well
distributed, we need a different strategy to obtain a good seed
placement and capture the surface’s overall shape. The second seed
placement technique relies on an implicit surface with properties that
allow good point projections. We fill the bounding box of the initial
samples with random points and then project them onto the surface.
In order to do that, we define the resolution R which will be used in its
largest dimension, defining the resolution of the other two dimen-
sions to create a regular grid with cubic cells. In the center of each cell,
we place a point which is randomly perturbed to a distance up to aL,
where L is the side length of the cell (in this work, we use R¼8 and
a¼ 0:25). This random displacement reproduces the effect of jittering
and reduces sampling artifacts. Fig. 3 illustrates one advantage of
using the bounding box strategy (right) instead of the sample-based
approach (left): the complete model is depicted and can be inspected.

However, both approaches may fail even when we have samples
well distributed over the surface, because certain regions can have too
few points, then adding a few points in the right place will improve
the final image. The bounding-box strategy can cluster points over
some part of the surface or create lack of points, in the same model.



E. Vital Brazil et al. / Computers & Graphics 35 (2011) 43–53 45
Tools to manipulate seeds directly are very important to achieve
better results (Fig. 4). Our approach is to allow the user to sketch a
region in the screen space to select visible points, then delete all or 50%
of the number of points are randomly chosen and deleted in these
regions. We have the option to place points directly on the model. The
user clicks where she/he wishes to place the new point but if we just
project this point it could stop far away from the chosen position. In
order to place the point below the mouse, we perform a line search
with constant stepsize to find an approximation to the first surface
intersection with a ray originating from the camera (Fig. 5), then we
use this position to start the projection. As a robust and automatic
alternative to our user-assisted approach, the relaxation-based
method presented by Meyer et al. [25] can be used either to sample
the surface from scratch or as a post-processing step for distributing
seeds already on the surface in a curvature-dependent manner.

To approximate the projection of one point p onto the surface,
we use the unconstrained optimization method of steepest descent
Fig. 3. Two approaches to place seeds. Left: exploiting the samples used to define

the surface. Right: a bounding box filled with jittered grid points subsequently

projected onto the implicit surface.

Fig. 4. Tools to improve the quality of the seed distribution. After computing seed points (

obtain a good distribution of seeds on the surface (d). Finally, we can compare the res

manipulated seed points (f).
with Armijo Rule to minimize the function 1
2 ðf ðxÞÞ

2, in which p0 ¼ p
is used as the initial iterate (for more details, see Appendix B). It is
worth noticing that this simple method provides a good enough
approximation to the projection of p onto the implicit surfaces as
long as the function f has properties similar to those of a signed
distance function in p.
5. Multi-level sample refinement

After the seeds have been placed on the surface, their positions
are ready to be used to generate render points. We divide the render
points into three groups: stippling, principal directions of curva-
ture, and combing directions. Stippling points are placed in a
scattered fashion, focusing on covering S uniformly, while the two
other groups provide linear mark depictions by clustering points
along a directional field. All three groups share the same recursion
idea. We use the actual seed position to place a new point near the
surface, located in space at a distance r from its seed. After that, we
project the new points onto the surface using the same method
described in Section 4. In the next step, all the recently generated
points become seeds of their own group, and we setr¼ r=3 (Fig. 6).
The process goes on until the desired visual effect is achieved. It is
important to notice that, by using this 1/3 rule, the distance
between a seed and all its descendants is limited; in fact, after k

steps, the distance between the original seed and any descendant
will be less than 1:5r0 and two points with the same original seed
will be at most 1=3kr0 apart.

5.1. Sampling near the surface

Since the projection method is faster and more precise when the
point is near the surface, we try to place new points as close as
a), the user can select areas to remove (b) and (c) as well as to insert points in order to

ults after 3 rounds of refinement using the original seed points (e) and using the

Fig. 5. Placing a new point (black) using the mouse as input. Red point is projection

point if it is placed without any approximation to start the projection, green point is

the final point position using a line-search (along the green line) to choose an

approximation. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)



Fig. 7. Placement of render points (black) near the surface using the given seed

(blue). Left: using the tangent plane. Right: using the osculating circle. (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

Fig. 8. Using square patches to choose r0. Upper left, the first approximation to r0;

bottom left, the user’s choice; right, the visual feedback after 2 steps of subdivision.

Fig. 9. Placement of stippling points: top view (a–c) and covering the entire model

(d). (a) Seeds over the surface; (b) points generated, with red square representing

the jitter range; (c) results of one subdivision step; (d) starting with 6 seed points,

after 5 subdivision steps, the final results over a sphere. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of

this article.)

Fig. 6. Multi-level sample refinement. Left to right, levels of refinement: one, two,

and three.

E. Vital Brazil et al. / Computers & Graphics 35 (2011) 43–5346
possible to it. We have two approaches to place the new points: one
uses the tangent plane of the surface, the other uses curvature
estimation (Fig. 7). Finding the plane tangent to the surface at a
projected or sample point of the implicit surface is virtually
costless, since these points already have their gradients calculated.
In contrast, in our approach, the use of curvatures to estimate the
new point position may be an expensive process, with a higher
computational cost than to project a point a bit farther from the
surface. As a result, this approach is only used when we place
render points at distances r along one of the principal directions of
curvature on the osculating circle (Section 5.3).

The initial step size r0 defines whether the points are well
spread or clustered over the surface. We use two semi-automatic
approaches to pick a good estimate of r0. In the first approach,
when placing seeds from the bounding box, the first r0 approx-
imation is the voxel diameter. In the second approach, when seeds
are placed directly from the samples, we use the average of their
empty ball diameter. However, these two approaches can either
underestimate or overestimater0, thus creating clusters or visually
broken lines, respectively. To avoid these cases, our system allows
the user to explicitly set r0. In order to provide good visual
feedback, our system randomly places square patches with sides
equal to 2r0 over the surface (Fig. 8).
5.2. Stippling points

To generate the stippling points we use the seeds’ tangent planes.
We need to create a basis to the affine plane to place these points.
There are many possibilities for building the basis using the normal
vector as input, with all choices having at least one point of
discontinuity [26]. For this step in our pipeline, we selected a method
that has two points of discontinuity, after observing they avoid
patterns (Fig. 9(d)). To create our basis, we rotate the normal to a fixed
axis ru¼ Rn and then compute the cross products u¼n� r0 and
r¼n�u. After that, n, u and r are normalized. Observe that, on the
fixed axis, this method is not well defined; however, we observed
that this was not a problem when placing stippling points. Four
points are placed near the surface by using the local coordinates
of the affine plane: pi,j ¼ i � rrþ j � ru, where i,j¼ 71þu, and
u� Uð½�0:125,0:125�Þ, i.e., u is a random variable with uniform
distribution within the interval [�0.125,0.125] (Fig. 9).
5.3. Drawing direction

To create the perception of short continuous lines, we use
the smoothness property of the implicit surface and a method to
create smooth directions. The idea is as follows: since we have a
smooth variation of normals and a piecewise smooth function
F : S �S2

-S2
�S2, Fðp,nÞ ¼ ðr,uÞ, we use these properties to

create a sequence of points pi ¼ 7rw, where w could be either
u or r. As previously mentioned, the points will be closer to each
other at each step of the subdivision; therefore, after a few steps, we
have the visual perception of a line being defined (Fig. 6, bottom
row). At the first subdivision step, the original seeds throw points
along both directions (r and u). After this first subdivision step,
we separate the points into two sets, generated using r and u,



E. Vital Brazil et al. / Computers & Graphics 35 (2011) 43–53 47
respectively. As a result, each set will only generate points along its
original direction.

We work with two different functions F to create the perception
of lines. The first one is the principal directions of curvatures, using
the method described by [27] to calculate a reduced Hessian
matrix, followed by its eigenvalues and eigenvectors to get the
principal directions and values of curvature. The second function is
the combing directions, using the method described by [26] to
create the basis. This approach splits the sphere into 12 regions
of directions. This partition creates a pattern that is curvature-
independent. These ‘‘combing directions’’ provide another way of
distributing line directions across the model. Qualitatively, they
seem to depict the overall perception of ‘mass volume’ of the object.
However, further work is necessary to evaluate such perceptual
cues and the possible combination with curvature lines and other
line directions. In Fig. 10, we compare combing directions with
principal directions of curvature.
Fig. 11. Top-left: the a decay when the point gets closer to the silhouette: back

points (red) and front points (green). Top-right: without hidden line attenuation.

Bottom row: final results. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
6. Rendering

At this stage, we are ready to use the render points already
placed over the surface to visualize the implicit model in different
styles. The render points are classified into three sets: front, back,
and silhouette. After that, they are assigned a point size and an
alpha value and are subsequently sent to the standard graphics
pipeline. We calculate n¼ n � v, where n is the normal at the point
and v is the viewing vector. Using a small threshold d40, we
identify front points when no�d, back points when n4d, and
silhouette points otherwise. After classifying all points, different
rendering effects are created, as described next.

6.1. Silhouettes and hidden-line attenuation

In our system, the silhouette points are always displayed;
however, occluded points could appear, thus creating artifacts.
We would like to provide different visual effects instead of simply
removing occluded points (Fig. 11, bottom). We attenuate hidden-
lines by displaying the back and front points in the same color as the
background and with an opacity value aA ½0,1� (Fig. 12). The tone of
the silhouette point will be closer to the background’s as much as
its depth-complexity. To be sure the silhouette points will not be
occluded by other points, we use a decay function fora. Thea values
of the front points have a quadratic decay function af ¼ n2l, and we
Fig. 10. Comparing drawing directions. Combing directions over (a) the sphere and

(top and bottom, respectively).
use ab ¼ 0:2ðlogðn�:05Þþ5Þl for the back points (Fig. 11, left),
where l is a parameter controlled by the user. If l¼ 0, all
silhouettes are displayed (Fig. 11, top right); if l40, we have line
attenuation (Fig. 11, bottom right). The size of the back points and
their a- decay function allows to create a halo effect on the
silhouette cusp points, but we need to control the point size to
achieve the same visual effect independent of scale. In order to
enhance the silhouettes the user has the option to draw a thicker
line in the tangent direction of the silhouette, i.e. a line with
(b) the elephant model. (c) First and second principal directions of curvature



Fig. 12. Different levels of hidden-line attenuation accumulated along the viewing

direction: (a) none (b) full (c) partial. Ellipses correspond to the tone value at the

intersection point (between surface and viewing directions). Boxes correspond to

the alpha attenuation at the point. Line colors correspond to front-faces, back-faces

and silhouettes (red, green and blue, respectively). (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article.)

Fig. 13. The Jaw model: without and with silhouette enhancement.

Fig. 14. Tone depiction by removing render points proportionally to the light

intensity.

E. Vital Brazil et al. / Computers & Graphics 35 (2011) 43–5348
direction n� v. Fig. 13 illustrates this effect. In the next section, we
provide more details regarding how to control the scaling effect.
Fig. 15. Scaling a shaded knot model by removing render points.
6.2. Tone depiction

In our approach, tone is depicted by removing front-points from
the surface to create three main types of effects: shading, depth
attenuation and tone scaling. The front points are removed
randomly, using different probability density functions. The back
points are plotted following the same rules of the previous section.
Lighting effects are achieved by calculating the tone tA ½0,1� at the
point, using any choice of illumination model (Fig. 14). Let us define
a random variable u� U½0,1�. A render point is displayed only if
uZt. In this work, lighting effects were generated using t¼ ðn � lÞl,
where l is the unit light vector and the parameter l allows the user
to control the light intensity. Depth attenuation is achieved by
removing both silhouette and front points. As for the lighting effect,
points with tZu are removed. We use the approach presented in
[28], t¼ 1�logðd=dminÞ=logðdmax=dminÞ, where d is the distance
between the point and the camera and dmin and dmax are the depth
where we start the attenuation and the far visible depth, respec-
tively (Fig. 22). Tone scaling preserves shading coherence when the
model is scaled up or down due to camera motion (Fig. 15). The
chance of a front-point being displayed has as an exponential
probability density function with the zoom factor as a variable. To
control the Halo-effect, we use the same function, but now to affect
the size of the back-point.

6.3. Local style control

All effects described earlier are global, meaning that they affect
all points on the surface. To give more control and achieve different
rendering styles, the system allows the user to select regions to
choose different kinds of points to be drawn. Inside the regions will
be draw only: (i) silhouettes, (ii) stippling, (iii) first or (iv) second
direction, (v) both directions or (iv) all points. The user can in
addition choose a decay function to create a smooth transition
between these regions (Fig. 16).

Regions are selected by placing spheres in scene-space and
adjusting their radii and style. The interface is very simple: the user
freezes the camera position and drags the mouse to set the sphere
position. There is no limit on the number of spheres for a model. The



Fig. 17. Comparing the results of global point placement (left) and localized style

control (right). In the figure, we illustrate an effect of blending attenuated

silhouettes, a single combing-direction (red), both combing-directions in cross-

patterns (yellow) and uniform point distribution (black) under local illumination.

(For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Fig. 16. Employing local style control to edit point placement and density to direct

the viewer’s attention to the regions of interest.

E. Vital Brazil et al. / Computers & Graphics 35 (2011) 43–53 49
feedback is interactive and allows to compose complex rendering
styles. We implemented two decay functions, both depending on
the distance to the sphere center. The first one is a quadratic
GðdÞ ¼ 1�ðd=rÞ2, the other is an exponential GðdÞ ¼ eð�4ðd=rÞ2Þ. In
these expressions, d is the distance of the point to the center of the
sphere, r is the radius of the sphere and GðdÞ ¼ 0 when d4r.
As before, the probability that the point will be plotted is going to be
the function value G(d). Fig. 17 illustrates the effect of controlled
blending among different rendering styles.
7. Implicit representation

In order to place our point-based primitives over a surface, we
rely on a few basic geometric operators, namely, projection of a
point onto a surface and the computation of normals, curvatures
and principal directions. By employing a suitable representation,
these operations can be made fast and implemented using simple
approximate algorithms, yet still giving very good results.

Our representation of choice is based on implicitly defined
surfaces computed from points and normals using the variational
extension of the HRBF Implicits method of [6] also presented in
[29]. This representation has many desirable properties that allow
us to employ off-the-shelf linear algebra packages together with
simple iterative algorithms to both compute the implicit function
and implement our basic geometric operators robustly enough.

We now briefly review HRBF Implicits and our scheme for
placing points onto a surface.

7.1. Hermite RBFs

Recently introduced in [6], HRBF Implicits provide a powerful
tool to reconstruct implicitly defined surfaces from points and
normals. They present many desirable properties of which we take
advantage in implementing our pipeline. For instance, the recon-
structed surface is guaranteed to interpolate the given points; in
addition, the unit normal at those points equals the gradient of the
function without having to artificial offset samples. Since the
gradient of the implicit function has unit norm at the samples,
the function does not vary too wildly close to the surface, a property
useful for simple iterative projection algorithms. Also, the implicit
function is guaranteed to be at least C1 at the sample points and, by
properly choosing the RBF, C1 everywhere else; the reconstructed
surface is therefore typically C1 at the samples and C1 otherwise.
This is a useful property in estimating the local curvatures and
principal directions at a given point on the surface. Experiments
indicate that their Hermite interpolation property allows good
behavior of both the reconstructed surface and the implicit
function even under nonuniform and coarse samplings, thus filling
holes and recovering local geometric details captured with the
first-order information provided by normals.

Since the main focus of this work is on rendering, we use a HRBF
Implicits fitter as a black-box whose input is the points fxjgNj ¼ 1 �R3

and normals fnjgNj ¼ 1 �S
2 and which outputs a function f : R3-R,

implicitly defining a surface by S ¼ f�1ð0Þ with the properties
mentioned above. For the sake of completeness, we briefly review
the form of a HRBF Implicits interpolant and how to fit its
coefficients from the given points and normals. In Appendix A,
we provide more details in order to ease its implementation.

7.1.1. The HRBF implicit interpolant

Macêdo et al. [6] introduced HRBF Implicits as an interpolatory
method for recovering implicitly defined surfaces from points and
normals. By making use of a theoretical framework for generalized
interpolation using radial basis functions, a concrete expression for
the implicit function f : R3-R was derived as follows:

f ðxÞ ¼
XN

j ¼ 1

fajcðx�xjÞ�/bj,rcðx�xjÞSgþpðxÞ, ð1Þ

where ajAR, bjAR3, p : R3-R is a trivariate polynomial and the
scalar field c : R3-R is defined by a radial basis function f :

Rþ-R as cðxÞ : ¼fðJxJÞ. Although the original paper does not
contain the polynomial term, this augmentation is possible by
introducing appropriate side-constraints, as we shall explain later.

Macêdo et al. [6] provide sufficient conditions and examples of
suitable choices for f satisfying the assumptions made in their



E. Vital Brazil et al. / Computers & Graphics 35 (2011) 43–5350
theoretical considerations. Most notably, the Gaussians fsðrÞ ¼

expð�r2=2s2Þ and suitable Wendland’s compactly supported
functions [30], of which frðrÞ ¼ ð1�r=rÞ4þ ð4r=rþ1Þ is the one they
employed. It was shown that, by enforcing the interpolation
conditions f ðxjÞ ¼ 0 and rf ðxjÞ ¼ nj at each sample point, the
coefficients in the expression above (without the polynomial term)
are uniquely determined and can be recovered by solving the
induced symmetric positive definite linear system.

In order to introduce augmenting polynomial terms, which is
useful when employing compactly supported RBFs, we need to fix a
basis p1, . . . ,pM : R3-R for these trivariate polynomials, where
M¼ ðdþ3

3 Þ and d is their degree; in addition, we need to be sure the
only polynomial with at most that degree whose value and gradient
are zero at all sample points is the constant zero; we also need the
additional side-constraints on the coefficients aj and bj:

XN

j ¼ 1

fajpkðx
jÞþ/bj,rpkðx

jÞSg ¼ 0, 8k¼ 1, . . . ,M: ð2Þ

Together with the interpolation conditions, these constraints result
in a symmetric (indefinite) linear system with 4N+M variables that
is guaranteed to have a unique solution for every (pairwise-
different) sample points and any prescribed normals.

In this work, we use a radial function that does not satisfy the strict
conditions presented in [6], the triharmonic fðrÞ :¼ r3. However, it
was shown by Duchon in his seminal paper [31] (and exploited in
[29]) that, for this choice of basis function and linear augmenting
polynomials (d¼ 1), the resulting Hermite interpolation system is
well posed for any set of (pairwise-different) sample points. More-
over, the recovered implicit function above will minimize a suitable
generalization of the thin-plate energy for Hermite problems in R3.
Fig. 18. Horse model rendered using style control: both uniform stippling and

combing directions (body) and just uniformly distributed stippling points (head

and neck).
8. Results and discussion

Our NPR techniques successfully depict shape and tone of HRBF
Implicits by extracting and rendering silhouettes with hidden-line
attenuation, stippling, and hatching following principal curvatures
and combing directions. All the results were generated on an 2.67 GHz
Intel i7 920, 6 gigabyte of RAM and OpenGL/nVIDIA GeForce GTX 295
graphics. Timings are presented in Table 1 for models representing a
variety of subjects. Our results were generated with point samples
from standard 3D meshes (Stanford bunny, Heart, Gargoyle, Lamp,

Elephant, Horse, Hand, Jaw, Venus and David), parametric surfaces (Tori

and Knot), height-maps (Terrain) and implicit surfaces (Sphere and
Table 1
Time (in seconds) given a drawing direction (C for combing, P for principal directions

of curvature); number of samples, stippling and hatching marks, and frames

per second.

Model Dir. Samples Stippling Hatching FPS

Sphere (Fig. 10) C 6 (0.0s) 3.7K (0.1s) 600K (2.7s) 11

Bunny (Fig. 4) – 256 (0.1s) 180K (34s) – 33

Terrain (Fig. 22) P 512 (0.9s) 1,600K (807s) 410K (168s) 3

Duck (Fig. 21) P 1021 (5s) 6K (6s) 343K (284s) 16

Jaw (Fig. 13) P 1023 (5s) 131K (120s) 55K (48s) 32

Gargoyle (Fig. 2) C 1024 (5s) 638K (409s) 163K (55s) 19

Tori (Fig. 14) P 1024 (5s) 639K (506s) 53K (59s) 45

Heart (Fig. 11) C 1024 (5s) 127K (130s) 266K (162s) 14

Horse (Fig. 18) C 1025 (5s) 128K (110s) 266K (145s) 16

Lungs (Fig. 16) P 1035 (5s) 128K (100s) 165K (118s) 41

Head (Fig. 19) P 1038 (5s) 8K (10s) 418K (3118s) 15

Knot (Fig. 15) P 1440 (16s) 179K (207s) 75K (102s) 22

Elephant (Fig. 10) C 2048 (38s) 10K (15s) 532K (506s) 11

Elephant (Fig. 10) P 2048 (38s) 10K (15s) 532K (803s) 11

Hand (Fig. 17) C 2062 (38s) 255K (438s) 330K (425s) 13

Lamp (Fig. 20) C 2469 (60s) 308K (592s) 128K (206s) 16

David (Fig. 1) C 4096 (283s) 520k (1789s) 216K (1747s) 9
Duck). All pre-processing and run-time rendering were computed on
the CPU only. No GPU programming was used.

Table 1 shows that all models used in our experiments are
rendered interactively. Also, the pre-processing time depends on
the number of points and samples. As expected, more samples
result in more complex HRBF computations. In addition, placing
render points along principal directions of curvature takes longer
than along combing directions.

Our approach produces promising results approximating pen-
and-ink styles as found in line drawings executed by hand on
models reconstructed from a given small set of point-normal
samples. We evaluated our results by observing how close they
approximate traditional pen and ink drawings.

Figs. 1 and 19 illustrate the steps for rendering pen–ink
drawings using our system in a similar way as found in traditional
drawing production (i.e., from initial sketch to finished rendering).
Given a set of point-normal samples, our system initially
Fig. 19. A head rendered in two different styles.



Fig. 20. General and detailed rendering of a garden lamp.

Fig. 21. Sketch-based model of a duck rendered using our system.

E. Vital Brazil et al. / Computers & Graphics 35 (2011) 43–53 51
reconstructs the model and allows the user to select rendering
techniques providing different levels of visual abstractions for
shape and tone depiction using lighting. Fig. 10 provides a
comparison between hatching along the combing directions and
the principal directions of curvature on the model of an elephant
fitted from 2048 samples. Observe the different shape depiction
abstractions. Fig. 15 illustrates tone depiction of a knot model
rendered using a combination of curvature-based hatching, stip-
pling and a slight attenuation of hidden-lines (enhancing the shape
depiction). Fig. 16 shows a blend among uniform point stippling
and some combinations between the principal directions of
curvature rendered over a lung model. Notice that strokes placed
along the first principal direction of curvature depict volumes,
while strokes placed along the second direction of curvature direct
our eyes along the length of the model [32–35]. Fig. 17 illustrates
how a local style control allows the user to direct the focus of
attention to a specific region. Fig. 18 depicts a horse model
rendered using a style control where both uniform stippling and
combing directions are employed on the body and only uniformly
distributed stippling points are placed above the neck. Fig. 20
illustrates a garden lamp model with planar regions. Notice that
sharp features are adequately rendered. Fig. 21 shows a sketch-
based model of a duck [29] fitted from coarsely sampled sparse 3D
curves and rendered using our system. Fig. 22 shows a Canyon
terrain model (512 point-normal samples) rendered in different
ink-based styles, properly depicting both shape and tone.
9. Conclusions and future work

We presented a completely point-based approach for depicting
shape and tone in models represented as implicit surfaces. For this
representation, we employ the recently introduced HRBF Implicits
for their good properties in reconstructing implicit models from
few samples consisting of points and their associated normals.
Among the features of our approach, the most salient issues regard
our strategies for placing initial seeds, a multilevel refinement of
points over the surface, choices of refinement directions suggesting
lines drawn along principal directions of curvature, a tiled direction
field (the combing direction), a smoother curvature-independent
choice of directions, and also new approaches to depict shape and
tone by implementing, in a simple manner and directly over the
HRBF Implicit model, ink-based NPR techniques including silhou-
ettes, attenuated hidden-lines and lighting tones by stippling and
hatching in which all of these can be combined into complex
renderings with artist-controlled tools and operators. Our
approach demands an initial preprocessing that densely samples
the implicit surface; however, after this step, both camera and
lighting parameters can be changed still at interactive rates on a
single core of modern CPUs.

There are still many avenues for further improvement one may
explore: the pre-processing step may be made faster by exploiting
the parallelizability of the seed placement and point refinement.
Both the evaluation of the HRBF Implicits interpolant and the
remotion of render points could be implemented in graphics
hardware while the HRBF fitting could be made in the CPU (even
exploiting domain decomposition for parallel processing of large
sample sets). Also, even though the basic geometric operators on
which we rely in designing our pipeline are general enough to be
implemented for different representations, we have only experi-
mented with models based on HRBF Implicits. We plan to experi-
ment with data and representations from different application
domains to further evaluate the suitability of our method. Also,
specific stylization effects for individual drawing primitives is an
interesting and important topics to investigate and integrate in our
system [36,5]. Finally, a more formal evaluation with trained artists



Fig. 22. Shape and tone depiction of the Canyon terrain model in different pen and ink styles using our system. In the bottom frame we compare the light effect (left) with the

light and depth attenuation effect (right). The model has 512 samples, 2M render points and with CPU rendering at 8 fps.

E. Vital Brazil et al. / Computers & Graphics 35 (2011) 43–5352
and illustrators should be performed and might indicate directions
for further usability investigation.
Acknowledgements

We would like to thank the Digital Michelangelo Project,
Stanford University for the David model, the Stanford Computer
Graphics Laboratory, NTU 3D Model Database, the AIM@SHAPE
project, and Rich Pito (University of Pennsylvania, GRASP Lab) who
made the other models available for use in this paper. Many thanks
to Nicole Sultanum and Patricia Rebolo Medici for their useful
discussions and advice. We also thank the anonymous reviewers
for their careful and valuable comments and suggestions. This
research was supported in part by the iCORE/Foundation CMG
Industrial Research Chair in Scalable Reservoir Visualization, by
Discovery Grants Program from the Natural Sciences and Engineer-
ing Research Council of Canada, and grants from the Brazilian
funding agencies CNPq and CAPES/PDEE.
Appendix A. Variational HRBF implicits

In this work, we employ the variational HRBF Implicits presented
in [29] to instantiate our pipeline for rendering implicit surfaces. For
the sake of completeness and ease of reference, we provide below all
the formulas needed to assemble the interpolation system and to
evaluate the implicit function as well as its gradient.

In order to assemble the interpolation system, we employ a
direct implementation of the block matrix defined by a samplewise
grouping of the conditions f ðxiÞ ¼ 0 andrf ðxiÞ ¼ ni, where f is given
in (1), and by the side-conditions for degree-one polynomials in (2).
This results in the following set of equations:

0

ni

� �
¼
XN

j ¼ 1

cðxi�xjÞ �rcðxi�xjÞ
T

rcðxi�xjÞ �Hcðxi�xjÞ

" #
aj

bj

" #
þ

1 ðxiÞ
T

0 I3�3

" #
b

a

� �

0

0

� �
¼
XN

j ¼ 1

1 0T

xj I3�3

" #
aj

bj

" #

where the unknowns faj,b
j
gNj ¼ 1 are computed after an LDLT-

factorization of the resulting symmetric (indefinite) matrix and
subsequent forward- and backward-substitutions as implemented
in the DSYSV routine from the LAPACK library [37]. The concrete
formulas for the functions used in the subblocks above are given by

cðxÞ ¼ JxJ3, rcðxÞ ¼ 3xJxJ,

HcðxÞ ¼
3

JxJ
ðJxJ2I3�3þxxT Þ,

where Hcð0Þ :¼ 03�3 to ensure its continuity.



E. Vital Brazil et al. / Computers & Graphics 35 (2011) 43–53 53
Appendix B. Approximate projection operator

In order to compute an approximation to the projection of a
point pAR3 onto the implicit surface S ¼ f�1ð0Þ, we employ a
simple gradient-based iterative method with backtracking. Our
iteration is a specialization of the method of steepest descent with

successive stepsize reduction [38] applied to the problem

min
xAR3

1

2
ðf ðxÞÞ2:

This iterative method has two parameters dAð0,1Þ and sAð0, 1
2Þ

and is fully determined by the sequence

p0 ¼ p, pkþ1 ¼ pk�dik f ðpkÞ

Jrf ðpkÞJ2
rf ðpkÞ,

where ik is the smallest nonnegative integer such that

ðf ðpkþ1ÞÞ
2r ðf ðpkÞÞ

2
½1�2sdik �,

which defines the backtracking and specializes the Armijo Rule for
successive stepsize reduction (with 1=Jrf ðpkÞJ2 as a first approx-
imation to the stepsize) [38].

In our experiments, we used d¼ 0:1 ands¼ 10�2 and we say the
projection finished successfully as soon as jf ðpkÞjo10�6 and in
failure when that condition is not satisfied up to 16 iterations or
Jrf ðpkÞJo10�6, in which case we simply discard the point. It must
be noted that we have not experienced failure with the choice of
parameters above.

References

[1] Andrews WM. Introduction to perceptual principles in medical illustration:
lines and illusions. Tutorial notes, illustrative visualization for medicine and
science (Eurographics ’06) 2006.

[2] Lohan FJ. Pen & ink techniques. Contemporary Books, Inc.; 1978.
[3] Smith JA. The pen and ink book: materials and techniques for today’s artist.

Watson-Guptill Publications; 1992.
[4] Deussen O. Aesthetic placement of points using generalized Lloyd relaxation.

In: Proceedings of 5th international symposium on computational aesthetics in
graphics, visualization and imaging (CAe’09). Eurographics Association; 2009.
p. 123–8.

[5] Kim SY, Maciejewski R, Isenberg T, Andrews WM, Chen W, Sousa MC, et al.
Stippling by example. In: Proceedings of 7th international symposium on non-
photorealistic animation and rendering (NPAR’09); 2009. p. 41–50.

[6] Macêdo I, Gois JP, Velho L. Hermite interpolation of implicit surfaces with radial
basis functions. In: Proceedings of XXII Brazilian symposium on computer
graphics and image processing (SIBGRAPI ’09); 2009. p. 1–8.

[7] Bremer D, Hughes JF. Rapid approximate silhouette rendering of implicit
surfaces. In: Proceedings of implicit surfaces ’98; 1998. p. 155–64.

[8] Elber G. Line art illustrations of parametric and implicit forms. IEEE Transac-
tions on Visualization and Computer Graphics 1998;4(1):71–81.

[9] Foster K, Jepp P, Wyvill B, Sousa MC, Galbraith C, Jorge JA. Pen-and-ink for
blobtree implicit models. Computer Graphics Forum (Eurographics ’05)
2005;24(3):267–76.

[10] Jepp P, Wyvill B, Sousa MC. Smarticles for sampling and rendering implicit
models. In: Proceedings of 4th theory and practice of computer graphics (TPCG
’06). Berlin: Springer; 2006. p. 39–46.

[11] Jepp P, Denzinger J, Wyvill B, Sousa MC. Using multi-agent systems for sampling
and rendering implicit surfaces. In: Proceedings of XXI Brazilian symposium on
computer graphics and image processing (SIBGRAPI ’08); 2008. p. 255–62.
[12] Schmidt R, Isenberg T, Jepp P, Singh K, Wyvill B. Sketching, scaffolding, and
inking: a visual history for interactive 3D modeling. In: Proceedings of the 5th
international symposium on non-photorealistic animation and rendering
(NPAR ’07); 2007. p. 23–32.

[13] Ricci A. A constructive geometry for computer graphics. The Computer Journal
1973;16(2):157–60.

[14] Rosten E, Drummond T. Rapid rendering of apparent contours of implicit
surfaces for realtime tracking. British Machine Vision Conference, 2003.
p. 719–28.

[15] Burns M, Klawe J, Rusinkiewicz S, Finkelstein A, DeCarlo D. Line drawings from
volume data. ACM Transactions on Graphics (SIGGRAPH ’05) 2005;24(3):
512–8.

[16] Plantinga S, Vegter G. Computing contour generators of evolving implicit
surfaces. ACM Transactions on Graphics 2006;25(4):1243–80.

[17] Stroila M, Eisemann E, Hart J. Clip art rendering of smooth isosurfaces. IEEE
Transactions on Visualization and Computer Graphics 2008;14(1):135–45.

[18] Proenc-a J, Jorge J, Sousa M. Sampling point-set implicits. In: Proceedings
of 4th IEEE/eurographics symposium on point-based graphics (PBG ’07); 2007.
p. 11–8.

[19] Proenc-a J, Jorge J, Sousa M. Suggestive contours over point-set implicits.
In: Proceedings of 3rd international conference on computer graphics theory
and applications (GRAPP ’08); 2008. p. 171–80.

[20] Akleman E. Implicit painting of CSG solids. In: Proceedings of CSG ’98
set-theoretic solid modelling; 1998. p. 99–113.

[21] Jepp P, Araujo BD, Jorge J, Wyvill B, Sousa MC. Style nodes for hierarchical tree-
based implicit surface modelling. In: Proceedings of 5th international sympo-
sium on computational aesthetics in graphics, visualization and imaging
(CA’09); 2009. p. 41–8.

[22] Wyvill B, Guy A, Galin E. Extending the csg tree-warping, blending, and boolean
operations in an implicit surface modeling system. Computer Graphics Forum
1999;18(2):149–58.

[23] Sederberg TW. Piecewise algebraic surface patches. Computer Aided Geo-
metric Design 1985;2(1):53–9.

[24] Bloomenthal J, Shoemake K. Convolution surfaces. SIGGRAPH Comput Graph
1991;25(4):251–6.

[25] Meyer MD, Georgel P, Whitaker RT. Robust particle systems for curvature
dependent sampling of implicit surfaces. In: International conference on shape
modeling and applications, 2005. p. 124–33.

[26] Stark MM. Efficient construction of perpendicular vectors without branching.
Journal of Graphics, GPU,& Game Tools 2009;14(1):55–62.

[27] Kindlmann G, Whitaker R, Tasdizen T, Moller T. Curvature-based transfer
functions for direct volume rendering: methods and applications. In: Proceed-
ings of 14th IEEE visualization (VIS’ 03); 2003. p. 513–20.

[28] Barla P, Thollot J, Markosian L. X-toon: an extended toon shader. In: Proceed-
ings of 4th international symposium on non-photorealistic animation and
rendering (NPAR ’06); 2006. p. 127–32.

[29] Vital Brazil E, Macêdo I, Sousa MC, de Figueiredo LH, Velho L. Sketching
variational Hermite-RBF Implicits. In: Proceedings of the sketch based inter-
faces and modeling; 2010. p. 1–8.

[30] Wendland H. Piecewise polynomial positive definite and compactly supported
radial functions of minimal degree. Advances in Computational Mathematics
1995;4(1):389–96. doi:10.1007/BF02123482.

[31] Duchon J. Splines minimizing rotation-invariant semi-norms in Sobolev
spaces. In: Constructive theory of functions of several variables, Lecture notes
in mathematics, vol. 571. Berlin, Heidelberg: Springer; 1977. p. 85–100.

[32] Rawson P. Drawing. University of Pennsylvania Press; 1987.
[33] Goldstein N. The art of responsive drawing. Prentice-Hall; 1999.
[34] Hertzmann A, Zorin D. Illustrating smooth surfaces. In: Proceedings of

SIGGRAPH ’00; 2000. p. 517–26.
[35] Sousa M, Samavati F, Brunn M. Depicting shape features with directional

strokes and spotlighting. In: Proceedings of computer graphics international
CGI ’04; 2004. p. 214–21.

[36] Xu H, Chen B. Stylized rendering of 3D scanned real world environments. In:
Proceedings of the 3rd international symposium on non-photorealistic anima-
tion and rendering (NPAR ’04); 2004. p. 25–34.

[37] LAPACK—Linear Algebra PACKage. Last visit in August 2010/http://netlib.org/
lapack/S.

[38] Bertsekas DP. Nonlinear programming. 2nd ed. Athena Scientific; 1999.

10.1007/BF02123482
http://netlib.org/lapack/
http://netlib.org/lapack/

	Shape and tone depiction for implicit surfaces
	Introduction
	Related work
	System overview
	Seed placement
	Multi-level sample refinement
	Sampling near the surface
	Stippling points
	Drawing direction

	Rendering
	Silhouettes and hidden-line attenuation
	Tone depiction
	Local style control

	Implicit representation
	Hermite RBFs
	The HRBF implicit interpolant


	Results and discussion
	Conclusions and future work
	Acknowledgements
	Variational HRBF implicits
	Approximate projection operator
	References




