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ABSTRACT

Ever improving computing power and technological advances are
greatly augmenting data collection and scientific observation. This
has directly contributed to increased data complexity and dimen-
sionality, motivating research of exploration techniques for multi-
dimensional data. Consequently, a recent influx of work dedicated
to techniques and tools that aid in understanding multidimensional
datasets can be observed in many research fields, including biol-
ogy, engineering, physics and scientific computing. While the ef-
fectiveness of existing techniques to analyze the structure and re-
lationships of multidimensional data varies greatly, few techniques
provide flexible mechanisms to simultaneously visualize and ac-
tively explore high-dimensional spaces. In this paper, we present an
inverse linear affine multidimensional projection, coined iLAMP,
that enables a novel interactive exploration technique for multidi-
mensional data. iLAMP operates in reverse to traditional projec-
tion methods by mapping low-dimensional information into a high-
dimensional space. This allows users to extrapolate instances of a
multidimensional dataset while exploring a projection of the data
to the planar domain. We present experimental results that validate
iLAMP, measuring the quality and coherence of the extrapolated
data; as well as demonstrate the utility of iLAMP to hypothesize
the unexplored regions of a high-dimensional space.

1 INTRODUCTION

The visualization of high-dimensional datasets has been a recurrent
research topic in the visualization community. New techniques that
provide visual representations of such complex data are in constant
development. High-dimensional datasets are, undoubtedly, of ex-
treme interest as they appear in most scientific domains, such as
engineering, physics and scientific computing. Most problems of
these and other fields can be seen as a system whose output depends
on a set of parameters which can be concatenated so as to form
high-dimensional instances. Well-established high-dimensional vi-
sualization techniques have proven to be efficient tools to allow the
comprehension of the relationship among various instances and/or
parameters of the dataset. However, for most scientific applica-
tions, it is required not only to analyze existing data, but to create
and evaluate new parameter combinations. Consider, for instance,
the problem of encountering input parameter combinations that re-
sult in a particular system output. This is a very common problem
in science and is usually modeled as optimization problems. Often,
the parameter space that defines the regions of feasible solutions are
very large and difficult to navigate. Automatic optimization meth-
ods are usually employed but fail on incorporating the user exper-
tise and intuition to the process. Moreover, the problem’s solution
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is often non-unique, i.e., several different parameter combinations
suit the required restrictions, what makes an effective exploration
of the parameter space a very important issue.

The technique proposed in this paper brings a new perspec-
tive for parameter space analysis and exploration by complement-
ing a traditional and well established high-dimensional visual-
ization technique with new interactive resources that allows for
navigating and resampling specific regions of the space. More
specifically, we empower the multidimensional projection tech-
nique called LAMP [25] with the new interactive functionalities,
rendering it a more versatile visual analysis tool. The proposed
technique converts the multidimensional projection method into a
really interactive tool which allows the user to inspect the visual
space and use it to create new high dimension instances.

But why to plug the new interactive mechanism into a multidi-
mensional projection method? It is not trivial to incorporate ex-
trapolation mechanisms into conventional high-dimensional data
visualization techniques such as parallel coordinates and scatter
plots [14]. The difficulty arises mainly because such techniques do
not provide a mechanism to visualize the neighborhood structure of
data under analysis, making harder the process of identifying sim-
ilar instances. Sophisticated visualization techniques able to pro-
vide some neighborhood information rely on non-intuitive visual
metaphors that hamper the user experience when exploring multi-
dimensional spaces.

In contrast, the intrinsic properties of multidimensional projec-
tion (MP) techniques make the visualization and manipulation of
neighborhood structures straightforward, motivating us to use MP
as basis for our resampling mechanism. In fact, the method pre-
sented in this work takes advantage of the inherent properties of
MP techniques, tailoring the novel interactive tool so as to visual-
ize regions of interest while still enabling mechanisms to synthe-
size new data in those regions. Called iLAMP (inverse-LAMP), our
method allows for resampling the high-dimensional space through
an interactive interface.

The resampling mechanism maps new points created by the user
in the visual space back to the high-dimensional space while pro-
viding a broad view of the neighborhood where the new data is
being created. iLAMP performs the backward projection through
local affine mappings that preserve distances between the new sam-
ples as much as possible, as it follows the same concept presented
on LAMP. Using the proposed scheme the user can interactively
extrapolate instances in a dataset, generating synthetic multidimen-
sional data out of existing projections.

We assess the robustness and accuracy of iLAMP by applying it
in synthetic and manufactured data sets where errors can be mea-
sured and visualized. Moreover, the proposed methodology is em-
ployed in an optimization-oriented application whose goal is to fig-
ure out the location of local minima as well as to explore regions
of the parameter space not visited by the optimization algorithm.
In this case, iLAMP is used to generate new possible parameter
combinations in unexplored regions of the original space. The new
instances are used as starting point for further optimization.



We can summarize the contributions presented in this paper
as:

• iLAMP: A novel mechanism to map information from the visual
space back to a high-dimensional space. The method builds
upon the recently proposed MP technique called LAMP [25] to
define affine mappings from the visual to the high-dimensional
space (Section 3).

• User-driven High Dimensional Space Exploration: iLAMP al-
lows the user to extrapolate existing data in an interactive man-
ner, using visual feedback provided by the projection to gener-
ate new data that helps to further explore parameter spaces. We
present an application scenario where iLAMP is used as an ex-
ploration tool for high-dimensional parameter spaces governing
optimization problems (Section 5).

To the best of our knowledge, the methodology presented in this
paper is the first one to enable a coherent connection between vi-
sual representation given by a multidimensional projection tech-
nique and interactive exploration/sampling of the high-dimensional
data space.

2 RELATED WORK

In this section we present an overview of traditional techniques that
proposes the visualization of high-dimensional data. We classify
multidimensional visualization techniques in three main categories:
Non-Projective Visualization, Simple Projection Visualization, and
Dimensionality Reduction Visualization.

2.1 Non-Projective Mappings

Multivariate visualization techniques, i.e. mapping high-
dimensional data to a 1- or 2-dimensional visual space, have long
been a focus of information visualization research. For instance,
parallel coordinates is a popular technique to visualize and inter-
actively explore multivariate data [22]. Each dimension of the data
is represented as a parallel coordinate, describing a non-projective
mapping of the N-dimensional space to the plane. A point in the
N-dimensional dataset is represented as a polyline in parallel co-
ordinate, connecting its value for each data dimension. Star Coor-
dinates is a variation of parallel coordinates, in which the axis for
each data dimension share a common origin [28, 29].

These techniques have been shown to be useful in cluster dis-
covery and multi-factor analysis; however, visual clutter becomes
problematic when exploring and visualizing large data. Hierarchi-
cal parallel coordinates perform clustering on the data, visualiz-
ing semi-transparent bands associated with each group [4, 16, 24].
While the clusters convey important information, outliers are lost
within these visualizations, better exposed through focus+context
visualizations [34]. While simple to construct and interact, the
neighborhood relationships between pairs of points can be difficult
to perceive within these non-projective techniques. In contrast, rel-
ative similarities between pairs of points are directly encoded in our
visualizations.

2.2 Simple Projective Mappings

In contrast to parallel coordinates, scatterplots describe a simplistic
projective view of the high-dimensional data [8]. A scatterplot is
a standard plot, considering two variables of the high-dimensional
data. Many visualization toolkits provide interactive scatterplot ca-
pabilities, including Tableau/Polaris [45] and GGobi [46]. Because
scatterplots are limited in the number of dimensions they visualize
in comparison to the size of most datasets, multiple plots are typi-
cally arranged into rows and columns forming scatterplot matrices.

Similar to parallel coordinates, it can become challenging to dis-
cern the important information while plotting large datasets. Sta-
tistical analyses and hierarchical group plotting [43, 44] highlight

the relationships between and within different groups. Other re-
search investigates automatically sorting the coordinates to deter-
mine salient correlations between different dimensions [40, 50]; as
well as integrating these features with animation effects for scatter-
plot browsing and interaction [13]. Scatterplot matrices are simple
to construct and interact; however, they require a profound knowl-
edge of the multiple coordinated views. In contrast, similarities
between different regions of the data are straightforward in our vi-
sualizations.

2.3 Dimensionality reduction mappings

In the context of this paper, dimensionality reduction solutions fur-
ther extend scatterplots by encoding additional (if not all) dimen-
sions of the original data within the 2D visualization. Often a di-
mensionality reduction solution will attempt to preserve distance
relationships between pairs of points in the high-dimensional space
through the mapping. When this is the case, the resulting scatter-
plots become extremely useful for visual analysis and exploration
within the plane of similarities hidden in the high-dimensional data.
Dimensionality reduction techniques can be either linear or non-
linear mapping solution.
Linear projection routines determine a mapping of the data with a
single transformation. Principal component analysis (PCA) [26] is
a well-known example of dimensionality reduction that determines
a number of orthogonal dimensions describing the maximal data
variances. These dimensional vectors describe the dominant trends
in the data. Other linear projection routines, including the linear
squares projection (LSP) [38] and part-linear multidimensional pro-
jection methods [39], solve projections based on a non-linear map-
ping of a subset of the dataset. A recent LSP-based interactive sys-
tem [20] avoids the computational complexity of the control point
distribution by relying on user inputs. However, dense projections,
due to few control points, causes the proposed system to be sensi-
tive during the painting sessions.
Non-linear multi-dimensional scaling. Many dimensionality
reduction techniques can be described as variants of multi-
dimensional scaling (MDS) [9]. MDS techniques rely on relational
measures between pairs of data samples and can ignore the original
data coordinates. Sammon’s mapping [42], a popular MDS tech-
nique, defines a function describing the error in distances between
point pairs due to the projection, then iteratively reduces this resid-
ual. Modifications to the distance function, with threshold [11] and
geodesic distances [48, 51], addresses the volatility of Sammon’s
mapping under large distances.

Spectral decomposition [49] is a global MDS routine, mapping
high-dimensional data to a visual space by computing eigenvectors
of the symmetric matrix encoding the distances between each pair
of data samples. To address high computational costs associated
with large datasets, extensions to spectral decomposition combine
local fitting and global linear mapping [41], use landmark subsam-
ples [5, 10], and develop multi-scale matrix representations [3, 30].
However, spectral decomposition lacks a flexibility that would en-
able user interactions, limiting application of such techniques in
visual exploration frameworks.

One fundamental issue to improve the interactivity and visual
insights over complex high-dimensional data is to layout its projec-
tion properly on the plane of the exploratory visual space. Force-
based schema have been used to design graph layouts for visual-
ization [12], with many variants [6, 27, 32, 33, 35, 37, 47]. These
techniques operate similar to finding the equilibrium of a spring-
mass system. Points are iteratively relaxed within the visual space
to reduce distortions in relative distances between local neighbors
as they are mapped from the high-dimensional space. Multivari-
ate brushing of force-based graphs [23] enables user exploration
of high-dimensional data; however, the expensive convergence re-
quired a static graph layout. While multilevel techniques [15, 21]



address this restriction, it remains a challenge for interactive sup-
port of very large datasets.

The mathematical foundation of the method described in this pa-
per is based on the LAMP methodology [25]. LAMP is a multidi-
mensional projection technique that derives from orthogonal map-
ping theory. It relies on local information to build affine transforma-
tions that map points from high to low dimension. iLAMP performs
the inverse mapping, still using the same mathematical background.

Dimensionality reduction methods have been the foundation of
several high-dimensional exploration and visualization tools. Fea-
ture exploration in multivariate scalar fields [23], vector fields [20],
and text mining [7, 36] applications rely on the clustering nature
of these projection techniques. While these techniques enable user
interaction, they restrict the exploration tasks to analysis of the ex-
isting data. The same is true for techniques that propose the visu-
alization of high-dimensional scalar functions, such as the works
from Harvey and Wang [19], and Gerber et al [17]. These methods
are valuable tools for optimization problems, but they do not allow
the user sampling and extrapolation of the data. In contrast, the
iLAMP method proposed in this paper, enables interactive visual
exploration of the projected space as well as the backward projec-
tion to extrapolate data that could be, creating a robust and fast
framework for visual exploration and analysis of high-dimensional
data.

3 ILAMP

In this section we present the theory behind iLAMP. In short terms,
iLAMP maps a point on the screen into a high-dimensional vector.
The proposed method takes as input a high-dimensional dataset and
its correspondent low-dimensional position, calculated by a mul-
tidimensional projection technique. With these datasets, iLAMP
provides an interactive environment that allows the user to create
new points in the visual space that contains the data projection. iL-
AMP computes an affine transformation that takes a point p, de-
fined by the user in the visual space, to a point q in the original
high-dimensional space. The transformation matrix is constructed
in such a way that the distances between the new point q and the
high-dimensional instances are as close as possible to the distances
between the user selected point p and the projected data.

Section 3.1 describes the mathematical details of the proposed
technique, which is based on the recently proposed multidimen-
sional technique LAMP [25]. Later, on Section 3.2, we discuss
computational aspects of the method. Section 3.3 discusses how
iLAMP handles false neighborhoods and tears, common artifacts
of multidimensional projections.

3.1 Mathematical Formulation

Let xi be an instance in dataset X ⊂ Rm, and its correspondent in-
stance yi in dataset Y ⊂R2; i.e.,yi is the correspondent multidimen-
sional projection of xi in the visual space. Both sets, X and Y , are
given as input to iLAMP, which uses this information to build local
affine transformations f :R2→Rm to map a point p from the visual
space to a point q in Rm.

Given a point p ∈ R2 and k ∈ N, the first step in the iLAMP al-
gorithm is to find the k closest neighbors to p among the instances
in Y . All the subsequent calculations are done solely based on these
k instances and their correspondent high-dimensional vectors en-
countered in dataset X . Let YS = {y1,y2 . . .yk} be the subset of
Y that contains the k closest points to p and XS = {x1,x2 . . .xk} the
dataset containing the correspondent high-dimensional instances on
X .

iLAMP maps p from the visual space to the original high-
dimensional space Rm by finding the affine transformation f (p) =
pM+ t that minimizes

k

∑
i=1

αi‖ f (yi)−xi‖2, subject to MT M = I, (1)

where matrix M and vector t are the unknowns, I is the identity
matrix, and αi are scalar weights defined as

αi =
1

‖yi−p‖2 . (2)

By taking partial derivatives with respect to t equal to zero, we
can write t in terms of M as

t = x̃− ỹM, x̃ =
∑

k
i=1 αixi

α
, ỹ =

∑
k
i=1 αiyi

α
, (3)

where α = ∑
k
i=1 αi. The minimization problem described on (1)

can be written as

min
M

k

∑
i=1

αi‖ŷiM− x̂i‖, subject to MT M = I, (4)

where x̂i = xi− x̃ and ŷi = yi− ỹ.
The minimization problem (4) can be written in matricial form

as

min
M
‖AM−B‖F , subject to MT M = I, (5)

where ‖.‖F denotes the Frobenius norm and A and B are matrices
given by

A =


√

α1ŷ1√
α2ŷ2
...√

αkŷk

 , B =


√

α1x̂1√
α2x̂2
...√

αkx̂k

 . (6)

The solution of (5) is given by

M =UV, AT B =UDV, (7)

where UDV is the singular value decomposition (SVD) of AT B.
Once M has been computed, the mapping of a point p to the high-
dimensional space is accomplished by

q = f (p) = (p− ỹ)M+ x̃. (8)

The rationale behind the minimization problem (5) is to build
affine mappings that respect the correspondence yi↔ xi. Note that,
if p→ yi the αi weight assigned to yi, calculated on Equation (2),
goes to infinity, i.e., the backward mapping of a projected data yi
is precisely its counterpart xi. Moreover, the constraint MT M = I
enforces Euclidean distances (norms) to be preserved as much as
possible during the mapping, as demonstrated bellow

‖Mx‖2 = (Mx)T Mx = xT MT Mx = xT x = ‖x‖2.

Since the Euclidean norms are preserved, the orthogonal matrix M
acts as an isometric transformation in the mapping. Such methodol-
ogy results in a quite accurate mapping scheme, as shown in Section
4. Before attesting the quality of iLAMP, we discuss some compu-
tational and implementation aspects of the technique.



3.2 Computational Aspects and Implementation
In this section we discuss some implementation and computational
aspects of the iLAMP technique. We provide a time analysis of the
method, a discussion on the neighborhood of point p and interaction
scheme of the proposed method.
Compact SVD and Time Analysis: The bottleneck of the iLAMP
computation is the calculation of the SVD of matrix AT B (Equa-
tion (7)). Matrices AT and B are 2×k and m×k, respectively, what
makes AT B a 2×m matrix. Since AT B contains only 2 rows, one
may employ compact SVD methods to compute the required de-
composition, reducing considerably the computational costs when
compared to a full SVD scheme. In our implementation we use the
LAPACK library [1] compact SVD routine.

The complexity of the iLAMP algorithm depends only on the
number of neighbors k and in the dimensionality of the original
data, as the calculation of the closest neighbors to point p can be
accomplished using efficient methods, such as quadtrees. Figure
1 displays the data dimensionality vs. time in milliseconds spent
by iLAMP to calculate 100 (one hundred) backward mappings, for
3 different values of k. The experiments were performed in a In-
tel Core i7-860 Processor (8M Cache, 2.80 GHz). Fifty runs of
the algorithm were performed for each test case, and the illustrated
results are the average time acquired. We observe that iLAMP is
extremely fast, what proportionates an interactive real-time appli-
cation. For instance, for k = 100 and m = 450, the average time
spent to calculate 100 backward mappings was 263 milliseconds.

Figure 1: Time, in milliseconds, consumed in the generation of 100
samples using iLAMP.

Number of neighbors: The number of neighbors k is an important
parameter for the iLAMP algorithm. It defines how many instances
of the original dataset will be taken into account on the construction
of the affine transformation matrix M that will map point p ∈R2 to
a point q ∈ Rm. Thus, the value of k has a deep impact on the
quality of the output transformation. In this work we chose k in a
heuristic fashion. Although the ideal value of k varies from dataset
to dataset, we experimentally inferred that good k values are usually
found in the range of three and twenty.
Interaction scheme: The main component of our system is a
screen that displays the multidimensional projection of a high-
dimensional dataset. The displayed projection provides the visual
feedback that allows the user to analyze the data and identify possi-
ble regions of interest to be further explored. For instance, these can
be empty regions in the projection space that are close to instances
of particular interest. Using direct point selection, via mouse or any
pointing device, the user is able to extrapolate the data in such re-
gions, by creating new points in the projection space and mapping
them to the original space using the iLAMP technique. This allows

the user to experiment what-if scenarios, exploring the parameter
space in an interactive and intuitive way.

3.3 Handling false neighborhoods and tears
False neighborhoods and tears are artifacts that may appear in mul-
tidimensional projections. A false neighborhood occurs when a
large distance in the original space is associated with a small dis-
tance in the projection space. This distortion falsely suggests a
neighborhood of points that do not accurately reflect the original
distribution of data. In contrast, a tear occurs when a small distance
in the multidimensional space is associated with a large distance in
the projection space. This distortion falsely conveys a large differ-
ence between nearby neighboring points.

Some projection techniques attempt to reduce these artifacts;
however, in many cases they are unavoidable [2]. For instance,
consider a dataset composed by samples of a hyper-sphere (or any
other closed surface). The projection of such samples will be some-
how distorted with the existence of false neighbors, tears, or both
[31]. More generally, the presence of outliers in a dataset often lead
to false neighborhoods in the projection.

If these artifacts are disregarded in the back-projection process,
iLAMP-generated points may become distorted and end up in unex-
pected regions of the original space. So far, we have considered that
the k closest points to p are searched among the instances of dataset
Y . In fact, this is the most natural procedure, as p and y ∈Y are de-
fined in the same space R2. However, if false neighborhoods and/or
tears are present in the projection, using only the low-dimensional
information for this task can result in misleading back-projection
mappings.

To accommodate for artifacts in the projection, it is possible to
incorporate the multidimensional data in the neighborhood defi-
nition of a point p. The closest instance yi ∈ Y to p seeds the
neighborhood search in the original space. The k − 1 closest
neighbors to the multidimensional instance xi ∈ X corresponding
to yi, (xi1,xi2,xik−1), define the neighborhood of p. This high-
dimensional neighborhood search prevents the usage of a neigh-
borhood set composed of false neighbors.

Note that we do not enforce the usage of the high-dimensional
neighborhood for the back-projection mapping. Instead, we allow
the user to decide whether to use low-dimensional information only,
or to include the high-dimensional information. However, the user
should have a way to assess the quality of the projection as a whole
or of regions of interest in order to make an informed decision on
how the neighborhood set will be formed.

We provide three visual tools to provide indications to the user
of artifacts within the projection. These methods are based on pro-
posed visualization techniques of false neighborhoods and tears [2].
In particular, Lespinats and Aupetit [31] propose two metrics that
should help in the identification of such artifacts and that we use
in this work. Based on Sammon’s [42] and Curvilinear Component
Analysis’ (CCA) [11] loss functions, each of these metrics account
for the identification of tears and false neighbors, respectively. The
calculation of each metric for a given instance i is given as follows:

PSammon(i) = ∑
j

(
‖d̄i j−di j‖2× 1

d̄i j

)
,

PCCA(i) = ∑
j

(
‖d̄i j−di j‖2× 1

di j

)
,

where d̄i j and di j are the distances between instances i and j in
the high- and low-dimensional space, respectively. Each point has
an associated P-value (one for Sammon’s and other for CCA’s loss
function), which can be mapped as colors in the projection screen.
In our system, the colors vary from black (low error) to red (high
error), as seen in Figure 2.



(a) (b)

Figure 2: Colormapping of the (a) Sammon’s (tears identification)
and (b) CCA’s (false neighborhoods identification) erros for the pro-
jection of a dataset composed of a 5D-sphere samples.

We also propose the visualization of a distance map related to a
projected point called pivot. In the projection screen, the user se-
lects a point to be the pivot, and the high-dimensional distance to
the pivot is used as a color mapping for each instance. The distance-
mapping information can be used as a guidance for the user in the
replacement of LAMP control points, in an attempt to reduce the
artifacts aforementioned in this section. It can also be valuable for
the user decision of using low-dimensional information only or in-
cluding high-dimensional information in the neighborhood used on
iLAMP. In this case, the maps vary from black (small distances) to
green (high distances). Figure 3 presents an example of the usage
of such information.

(a) (b)

Figure 3: Projection of a 5D sphere dataset. (a) Original Projection
colored according to the Distance map of the pivot. It is easy to
visualize numerous false neighbors (light green points close to the
pivot). (b) Using distance map information, LAMP control points are
rearranged. The left points’ cloud contains close neighbors to the
pivot. Creating new points close to this cloud minimizes the incident
of false neighborhoods and tears.

Thus, we cope with false neighborhoods and tears by providing
visual feedbacks that allow the user to identify such artifacts. An
informed decision regarding the iLAMP-neighborhood type (low-
or high-dimensional) can be made in order to reduce or prevent
distortions in the iLAMP-generated points.

4 VALIDATION

In this section we present the experiments and results used to mea-
sure the quality of the iLAMP method. As previously stated, iL-
AMP is used to map an instance p ∈ R2 to an instance q ∈ Rm in
a coherent way. While there are an infinite number of vectors that
may be assigned to q, the goal of iLAMP is to compute the vector
that is consistent with the original dataset. More specifically, we
compute the vector q whose multidimensional projection is near to
the high-dimensional original surface. In this section we describe
the experiments and measurements that lend credence to our back-
projection technique.

4.1 Curve Back-Projection
We begin with a qualitative analysis by applying iLAMP to a user
designed 2D curve back-projecting it into a 3D space. Operating
in lower dimensions provides visual confirmation of the iLAMP re-
sults. In this experiment we construct the parallel swissroll dataset
by randomly sampling 2000 instances from two adjacent swissrolls
that are separated by a small void.

Our parallel swissroll is projected to the plane using LAMP, in
which 80 control points are strategically selected along the edges
of each swissroll. As demonstrated in Figure 4, a free-hand curve
is drawn on the 2D visual space, between the two projected swiss-
rolls. Using 60 iLAMP neighbors, we back-project the user defined
curve, mapping it back into the original 3D space. Figure 4 illus-
trates the iLAMP reconstructed curve, which appears to be lifted in
dimension in a precise and coherent way.

4.2 Hypersphere Reconstruction
The unit hypersphere embedded in an m-dimensional space,
∑

m
i=1 x2

i − 1 = 0, provides the basis for our quantitative analysis
of iLAMP. We create synthetic hypersphere datasets designed to
test the robustness of iLAMP under varying sample density and
increasing space dimensionality. The datasets are constructed by
randomly sampling hyperspheres with different densities (100, 500
and 1000 instances), embedded in multiple spaces (3-, 5-, 10- and
20-dimensional spaces). The different combination of these vari-
ables results in the generation of 12 unique hypersphere datasets,
against which the following tests are run.

For a given hypersphere dataset, we begin by projecting the sam-
ples to the planar domain using LAMP. In these tests, 3

√
n ran-

domly selected samples are selected as the control points used to
drive the LAMP projection. Next, 200 points are randomly sampled
over the projected domain and iLAMP back-projects them into the
original high-dimensional space. Figure 5 illustrates the projection
of the 4 hypersphere datasets with 500 samples. In this figure, the
red points are the projected samples and the blue points are the 200
randomly selected iLAMP input points.

We additionally note that the iLAMP procedure is applied to
each 2D point multiple times with different neighborhood sizes.
We increment the number of nearest neighbors considered by iL-
AMP over the interval between 2 and 20, producing 19 different
back-projections.

Three metrics monitor the result accuracy, including (1) the dis-
tance between back-projected samples and the analytically defined
surface; (2) the stress function; and (3) the LAMP-validation.
Distance to surface The first measure computes the distance be-
tween the back-projected samples, generated via iLAMP, and the
nearest point on the unit hypersphere. This value indicates how
consistent the iLAMP results are to the originating surface. The
distance ds of the back-projected point q is defined as,

ds(q) = |1−
m

∑
i=1

q2
i |.

Figure 6 presents box plots of the distances computed between
iLAMP’s back-projected high-dimensional samples and the hyper-
sphere. Observe that the extrapolated points remain close to the
hypersphere surface over which the dataset had been sampled. In
particular, the mean distance error is below 0.15 in each experi-
ment. The reported distances rely on the best back-projection solu-
tion found amongst the different iLAMP neighborhood sizes used.
The following quality measure analyzes the effects of neighborhood
size.
Stress function As presented on Section 3.1, the design of iL-
AMP’s transformation matrix is motivated by LAMP. Specifically,
the back-projection closely preserves the relative distances between
a 2D point p and its neighbors as the relative distances between the



(a) (b) (c)
Figure 4: Swiss roll curve back projection example. (a) original dataset; (b) projection and 2D curve samples (black); (c) 3D swiss roll and
back-projected curve.

(a) 3D (b) 5D

(c) 10D (d) 20D
Figure 5: Hypersphere datasets consisting of 500 points (red) in vari-
ous high-dimensional spaces are projected to the plane using LAMP.
200 new points are randomly sampled over the projection domain
(blue) and used for validation of the iLAMP method.

back-projection of p with the high-dimensional images of its 2D
neighbors. Projection techniques, such as LAMP, rely on the stress
function to measure this preservation of relative distances to vali-
date their dimensionality reduction approaches.

To determine the stress function, let l and n be the number of new
and original instances, respectively. Let di j and d̄i j be the distances
between pi and y j , and qi and x j, respectively. Recall that x j ∈ X ∈
Rm (the original dataset) and y j = LAMP(x j). The iLAMP stress
function is defined,

s =

l

∑
i=1

n

∑
j=1

(di j− d̄i j)
2

l

∑
i=1

n

∑
j=1

d2
i j

.

Note that the stress function measures the distance preservation be-
tween all pairs of points in the dataset, not just the k nearest neigh-
bors, to measure the global distortion of space.

Figure 6: Distances between newly created samples and the sphere
surface for each hyper-sphere dataset.

Figure 7 plots the stress function for the iLAMP reconstructions
of the multiple hypersphere datasets with respect to the iLAMP
neighborhood size (k nearest neighbors). Observe that the number
of neighbors is inversely correlated to the projection’s stress func-
tion; but, with diminishing returns. Further, larger neighborhoods
are necessary as the dimensionality of the original dataset increases
to maintain a high quality in the back-projection.
LAMP-validation Lastly, the LAMP-validation applies the LAMP
projection technique to back-projected points, measuring the dis-
tance between the new projection and the original point. The user
selected 2D point p is lifted into the original high-dimensional
space, q = iLAMP(p). This point q is projected back to the 2D
domain as p′ = LAMP(q). The LAMP-validation measurement be-
comes,

L(p) =
‖p−p′‖
‖p′‖

Figure 8 presents the LAMP-validation error for various hyper-
sphere datasets of various sample density and dimensionality. This
test utilizes the LAMP projection method to attest to the coherence
of the extrapolated instances. The small distance residuals sug-
gest that the iLAMP extrapolated instances are consistent with the
LAMP projection. In particular, the mean error is below 0.1 across
each experiment.

4.3 Experiment Discussion
The results presented in this section indicate that the iLAMP tech-
nique is able to extrapolate instances of an existing dataset based on



Figure 7: Stress function x number of neighbors (Results obtained
with 500 samples’ datasets).

Figure 8: Error measurements for the LAMP-validation metric.

local neighborhoods from the layout of a projection. The method
creates new instances that are coherent with the original dataset
(Figure 6) and its projection (Figure 8). Further, it closely pre-
serves relative distances between point pairs in the m-dimensional
space (Figure 7). In the following section we present applications
of iLAMP in more specific scenarios.

5 EXPLORING PARAMETER SPACES IN OPTIMIZATION
PROBLEMS

In this section we present an application in which the user expertise
is incorporated into the optimization process by iLAMP. In general,
optimization problems are solved using automatic methods by ei-
ther gradient-based or gradient-free techniques. Such techniques
start from an initial guess and iteratively improve the solution until
it gets trapped in a minimum. Gradient-based techniques are very
sensitive to the initial guess and different minima may be reached
depending on the location of the initial guess. However, creating
meaningful starting points for such algorithms is challenging be-
cause, in the very beginning, the user may have no idea on where
good minimizers are located. Moreover, most optimization prob-
lems present non-unique solutions, i.e., there are several satisfac-
tory minimization points. Our application integrates LAMP projec-
tion and iLAMP backwards projection in a system that allows the
user to explore and inspect by a sampling mechanism regions of
interest in the high-dimensional space of possible solutions.

5.1 System

In this application we employ iLAMP to allow the user to interac-
tively explore the high-dimensional optimization space. The appli-
cation is composed of three main subprograms: 1) LAMP projec-
tion visualization method; 2) iLAMP backwards projection and 3)
an optimization method. A visualization and interaction window
integrates the three moduli while allowing the user to interact the
resulting visualization. Figure 9 illustrates the system workflow.

The proposed application receives as input an initial dataset,
composed of precomputed local minima, which is projected to the
visual space by LAMP (Figure 11-a). LAMP is intrinsically in-
teractive, which allows the user to explore and analyze the initial
data by simply manipulating control points (see [25] for details). In
this exploration phase, the user can identify regions of interest in
the high-dimensional space and resample those regions by adding
new points in the visual space. In fact, the system allows the user
to create individual points or a set of random points by clicking or
drawing rectangles in the visual space (Figure 11-b and c). The
new user-defined samples are backward mapped to the multidimen-
sional spaces using our approach. The new points are then inputed
as starting points into optimization procedure (Figure 11-d) in or-
der to reveal new local extrema (Figure 11-e). The process can be
further refined in specific regions of interest (Figure 11-f) to h) until
the user is satisfied with the optimization results.

LAMP

iLAMP

Visualization Screen

Optm.

Low dimension data

1

2 3

4

5

6Initial dataset

High dimension data

Figure 9: Application workflow; green and blue arrows represent the
flux of the low and high-dimensional data, respectively. Instances
colored according to optimization function value. (1) Initial data given
as input to LAMP; (2) Projection (3) User input passed to iLAMP; (4)
New high-dimensional samples; (5) New data is passed as argument
to the optimization method; (6) Optimization result incorporated to
the dataset.

System in use: In order to provide details about our methodol-
ogy, we discuss an example step-by-step, demonstrating that our
technique may help in the analysis and inspection of optimization
spaces.

To illustrate the system we choose the bird function as the func-
tion to be minimized and the Levenberg-Marquadt method to per-
form the optimization. The bird function is defined as follows:



b(x) =
(m/2)−1

∑
i=0

(sin(xi∗2)∗ e(1−cos(xi∗2+1))
2
+

cos(xi∗2+1)∗ e(1−sin(xi∗2))
2
+

(xi∗2− xi∗2+1)
2 +106.76),

where m is the dimension of the space and xi the coordinates of
point x.

Figure 10 illustrates the bird function for m = 2 in the interval
−2π < xi < 2π , where we can clearly see four local minima. If we
make m = 20 we end up with thousands of local minima, making
difficult to figure out where are the best minimizers.

Figure 10: Bird-function for 2 parameters. Four local minima.

We start the 20-dimensional space exploration by running the
gradient-based minimization method 100 times with random initial
guesses. The smallest minimum contained in the initial dataset has
a function value b(x) = 19. The initial dataset was given as input to
LAMP, which projected the instances to the visual space (Figure 11-
a). Projected samples are colored according to their b(x) function
value, which is a key information to guide the user towards regions
containing other minima.

With the projection in hand, the optimization space was explored
and interactively resampled. iLAMP allows the user to manipu-
late control points so as to modify the projection and bring out re-
gions of interest where the user can resample by clicking points
and drawing rectangular boxes in the visual space (Figure 11-b).
Our approach projects the user defined samples back to the high-
dimensional space, which are added to the dataset (Figure 11-c).
Figure 11-d shows the initial data in green and the new ones cre-
ated by the user in blue. The new samples are used as input to the
gradient-based method which reveals new local minima. Figure 11-
e shows the new local minima colored according to their function
value. Our exploration system includes some of the new samples
as control points for LAMP in order to improve interactivity. A
further exploration of the space was performed to bring out more
regions of interest (Figure 11-f). Zooming in those regions of in-
terest and repeating the process above a couple of times we end up
with approximately 300 new samples (Figure 11-g) which give rise
to many extrema, as illustrated in Figure 11-h. In a few seconds we
were able to interactively find out minimizer where the bird func-
tion is equal to b(x) = 1.4e−5, besides many other local minima
that might be of great interest depending on the application.

The example above shows that the proposed system empowers
the user with a flexibility not found in other high-dimensional data

exploration technique. Indeed, we have tested our approach in op-
timization functions other than the bird function as well as distinct
optimization algorithms. With no exception we could “mine” new
minima in a few seconds, always improving the initial results pro-
vided by the automated sampling mechanisms built into the opti-
mization softwares, thus making evident the effectiveness of our
approach and the importance of adding the user in the process.

6 CONCLUSION AND FUTURE WORK

As discussed on Section 3, iLAMP has a very solid mathematical
foundation. The accuracy of the proposed technique was attested
in qualitative and quantitative experiments, presented on Section 4.
Moreover, the application presented on Section 5 indicates that iL-
AMP can provide a good alternative for including the user knowl-
edge into parameter space exploration of optimization problems, a
process usually accomplished with automatic methods.

There are still some points to be improved. One issue is the de-
termination of the number of neighbors k, as the system expects
the user to provide this parameter value. Results on Section 4 in-
dicate that k is an important parameter that should be carefully de-
termined in order to have the best iLAMP results. So far we don’t
have an automatic way to determine such parameter, and we de-
pend on heuristic evaluations to decide this value. Also, it would
be most interesting to couple traditional high-dimensional visual-
ization techniques, such as parallel coordinates and scatter plots,
with our system. We believe that these techniques could provide a
greater insight of each instance represented in the low-dimensional
space. Another future work is to investigate how to perform back-
wards projection using different multidimensional projection tech-
niques, other than LAMP.

Furthermore, a next step in this work is to apply the proposed
technique into real-world problems. For instance, the history
matching problem in reservoir engineering is already benefiting
from the use of multidimensional projection techniques [18] and
could be a possible venue to be tackled.

To summarize, in this work we presented the iLAMP method,
a novel approach to explore high-dimensional data. The starting
point of iLAMP is the 2D projection of a high-dimensional dataset,
embedded in a visual space, in which the exploration takes place.
iLAMP allows the user to create points and regions in the visual
space and map them back into high-dimensional instances, based
on the distance of the selected point and the projected data.
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