
Towards A Usable API for Constructing Interactive

Multi-Surface Systems
Chris Burns, Teddy Seyed, Theodore D. Hellmann, Jennifer Ferreira, Frank Maurer

University of Calgary, Department of Computer Science
2500 University Drive NW

Calgary, Alberta, Canada, T2N1N4
{chris.burns, teddy.seyed, tdhellma, jen.ferreira, frank.maurer }@ucalgary.ca

ABSTRACT

Research into multi-surface systems goes back for more than

thirty years, yet these systems have not been taken up in real-

world settings. We believe the reason for the lack of adoption is

that constructing multi-surface systems is costly and requires

specialist knowledge of tasks related to device discovery, cross-

platform interoperability, networking, and spatial tracking. These

tasks represent a significant distraction from implementing

features that actually matter to end users. While some APIs exist

for supporting the set-up of multi-surface systems, they are

directed at specialist developers. We propose to develop a highly

learnable API for constructing multi-surface systems, which is

targeted at non-specialists.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and

Features – Frameworks

General Terms

Design, Human Factors.

Keywords

Multi-surface system, API Usability, API Design

1. INTRODUCTION
Multi-surface systems integrate multiple, heterogeneous

computing devices into a single application solution. They rely on

Natural User Interface (NUI) approaches like multi-touch

interaction, gesture recognition and object tracking in 3d space for

creating advanced user experiences (as opposed to multi-display

environments that primarily focus on WIMP-based interfaces on

multiple displays). There has been over thirty years of research

into developing interactive multi-surface systems [1], yet

examples of systems deployed in the real world are rare. We

hypothesize that this is due to the cost and complexity of

developing such applications for use in an interactive space.

Currently, a developer creating such an application would have to

be knowledgeable about device discovery, cross-platform

interoperability, networking, spatial tracking, and other tasks.

While these ancillary tasks are necessary for the application as a

whole to work naturally, these tasks represent a significant

distraction from implementing features that matter to end users.

To reduce the amount of this specialist knowledge that developers

require to build applications for use in interactive spaces,

developers need advanced and usable tool support. We believe

this tool support should take the form of a highly usable and

reusable application programming interface (API). This API

should allow developers to focus on development of their

applications rather than on ancillary tasks like interpreting video

input, interpreting depth sensor data or advanced 3d graphics

processing. The API should also include functionality for

handling difficult, ambiguous cases for interaction in multi-

surface interactive spaces – such as automatically determining the

devices that different users intend to interact with. These

situations will become increasingly common as interactive spaces

increasingly incorporate multiple devices in one room, e.g.,

smartphones and tablets. It is important that this API be highly

usable – especially in terms of learnability – so that it can be

easily adopted and used by typical development teams.

In this paper, we discuss existing applications for interactive

spaces, challenges to the development of such systems, and the

characteristics of an API that would be better able to support their

development. A brief description of our work towards the creation

of such an API – along with a description of our plans to evaluate

it – is also included at the end of this paper.

2. INTERACTIVE SPACES
Several definitions of multi-surface interactive spaces have been

proposed. In 2011, Gjerlufsen et al. used the following to describe

interactive spaces: “Multi-surface environments are ubiquitous

computing environments where interaction spans multiple input

and output devices and can be performed by several users

simultaneously” [1]. However, in 2006, Shen et al. made use of a

much more specific definition: “By using the term multi-surface,

instead of multi-display, we emphasize the nature of many of

today’s interactive walls, tables, Tablet PCs, desktop displays,

laptops and PDAs that often can be interacted upon in addition to

be merely the visual display” [2]. We follow the latter definition

because it allows us to focus on systems in which devices

participate in both interaction and display of data. Few real-world

systems actually fit under this description, i.e., systems that are

deployed and in active use outside of research labs.

The research literature has many examples of prototypes of multi-

surface systems created and used within research laboratories. The

earliest example is i-Land, a system developed by Streitz et al. in

1999 [3]. This early interactive system included a tabletop and

wall display. Many of the interactions with this system focused on

transfer of data between devices without tracking those devices.

Since then, interactive spaces have been extended to include

tracking of people and devices in interactive spaces using motion

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

capture systems like those produced by VICON1. The WILD

room, for example, employs such a tracking system to support

interactions based on the position of individuals and items in the

interactive space [4]. Code Space is a system developed at

Microsoft Research that uses depth-sensing cameras to support

interactions between a digital tabletop and a large-format wall

display [5]. This system employs touch gestures as well as

gestures performed in the air to support collaborative meetings.

Touch gestures are performed on the device, using the multi-touch

capabilities of the device. Gestures performed in the air are

physical gestures, such as waving or pointing. Both types of

interactions are accomplished through integration of smartphones

into the interactive space.

Real-world products are harder to find. One real-world example is

the PBCave2. This system is commercially available, can be used

for information visualization and is composed of a digital tabletop

and wall display. It does not, however, support integration with

now-ubiquitous smartphones and tablets to provide spatial

tracking.

The lack of examples of interactive spaces in use outside the

laboratory is troubling given the long history of research in this

field. In order to address this issue, we should first ask: what

makes development of applications for use in interactive spaces

difficult? We explore these development challenges in the next

section.

3. DEVELOPMENT CHALLENGES
We believe that there are two causes of the lack of real-world

interactive spaces: (1) the cost of hardware commonly used in

these systems, and (2) the complexity of developing applications

on top of a multi-surface environment. We believe that both of

these difficulties can, at least partially, be overcome with an API

which supports the use of widely available hardware (cost

reduction) and which developers can use to effectively incorporate

their applications into an interactive space (complexity reduction).

The API needs to provide a certain set of features. In the

following, we’ll discuss a minimum core of these.

3.1 Spatial Tracking
Spatial tracking allows a system to track the position of people,

devices, and other items in the interactive space. Coupled with a

model of the interactive space, this information can be used to

support a variety of proxemic interactions. Currently, this is

1 http://www.vicon.com/

2http://www.pbworld.com/capabilities_projects/visualization/cave

.aspx

typically implemented using expensive, high-end VICON motion-

tracking cameras.

In the past it was necessary to use such high-end technology to

accomplish accurate tracking. With the introduction of devices

like the Microsoft Kinect, it is now possible to get motion-

tracking using inexpensive, widely-available technology. Using

the Kinect together with orientation-aware devices – such as

Apple’s iPhone and iPad – it is possible to track both the position

and orientation of these devices. However, compiling low-level

information about the position and information of a device into

meaningful high-level information – for example, out of several

possibilities, which device is a user trying to interact with – is a

complicated task. These tasks require a significant amount of

mathematical knowledge and also involve cross-platform

communication between the mobile devices and the system

tracking the position of mobile devices in the interactive space.

3.2 Heterogeneous Device Integration
Digital tabletops are large, touch-enabled surfaces that are good

for collaborative work. Examples of these devices include the

Evoluce One3, the SMART Table4, and the Microsoft Surface5. Of

these, only the SMART Table is capable of running a non-

Windows operating system. On the other hand, most smartphones

and tablets run either iOS or Android operating systems while the

Windows Phone 7 has only around a 2% market share

worldwide6. In order to build a multi-surface system that supports

common existing devices, developers are required to overcome

the significant challenges that exist in trying to communicate

information between these platforms. For example, transferring an

image between two devices may require setting up network

connections and handling the different file formats of the content.

What is needed is a software architecture that supports device

discovery and message passing between heterogeneous devices.

4. API DESIGN
In this section, we propose the two main features of an API for the

development of applications that run in multi-surface interactive

spaces. We believe supporting spatial awareness and

communication between devices would simplify the

implementation of these systems.

4.1 Spatial Awareness
The API must be aware of people and devices in the room. Spatial

awareness is the ability to determine position and orientation over

time – including mobile devices such as tablets and smartphones

and fixed devices such as digital tabletops and wall-sized displays.

The position of fixed devices within the room as well the layout of

the room should be specified using a graphical user interface.

The location of mobile devices can be tracked using a Kinect

while orientation data can be captured from the gyroscopes

already built into many mobile devices. This data can be

transmitted back to the system and integrated with the fixed

position data to support spatial interactions. For example, when a

user attempts to use a flick gesture to transfer data from a mobile

device to a fixed device, such as in Figure 2, the system would use

3 http://www.evoluce.com/en/hardware/multi-touch_table.php

4 http://smarttech.com/table

5 http://www.microsoft.com/surface

6 http://www.gartner.com/it/page.jsp?id=1848514

Figure 1: “Pouring” data from an iPad to a tabletop.

spatial information to select the destination device that the user

intended.

4.2 Communication
The API must also allow all devices in the system to communicate

without requiring developers to consider the platform-specific

details of each device. This should be accomplished using HTTP

as the transportation layer, and implementing a REST-ful

interface for each device. To simplify communication tasks

further, client libraries should be implemented for each common

platform, such as Android, iOS and Windows. Developers could

simply subscribe to communication events using the language

common to their platform, for example, Java for Android or

Objective-C for iOS.

Finally, the discovery of devices in the system should be handled

using a standard protocol such as Bonjour. This would allow new

devices to be added into the system dynamically without writing

code to specifically handle each device.

5. SUPPORTED INTERACTIONS
Several types of interactions should be supported by the API to

help designers and developers in the creation of multi-surface

applications. Each interaction should be treated as a first-class

event in the API. Developers will be able to assign certain

functionality to be triggered on each device when it receives a

specific event. For example, when a flick gesture is sent from one

device to another, the system will alert the target device with a

notification of this event. This design will allow designers and

developers to add these interactions into their application with

very little time and effort. This section further describes the

different types of gestures that should be supported by the API.

5.1 Proxemic Interactions
Proxemic interactions have been explored in detail in the field of

human-computer interaction. Centrally, Marquardt et al. presented

Proximity Toolkit, an API for supporting proxemic interactions

[6]. Developers can define functionality to be triggered based on

the position of users in the system, the number of users being

tracked, and other spatial information. This toolkit, however,

relies on the use of VICON cameras. However, it is now possible

to duplicate most of the functionality provided by this system by

using the Kinect for motion capture. Given the difference in price

between these systems, the API should focus on this new and

promising device. By combining two Kinects we can deal with

occlusion issues, specifically, walk past occlusions.

5.2 Physical Gestures
Physical gestures performed in the air are triggered by users

moving their arms, hands, or fingers. For example, in some

applications, users are able to control applications by pointing at

icons as a means of choosing a selection or waving their hands to

go back up one level of a directory hierarchy. The implementation

of these gestures in an application is currently a very low-level,

complicated process. In order to promote the use of these

interactions in multi-surface applications, the API should provide

high-level methods to allow these gestures to be used by designers

and developers who do not have the specialist knowledge that

would normally be required to implement these gestures.

5.3 Device Gestures
A device gesture is a gesture performed by a user physically

interacting with or moving a mobile device. These gesture types

can be subdivided into control and information-passing gestures.

Control gestures are distinct from gestures which pass

information.

5.3.1 Between-Device Control Gestures
Gestures can be used to allow one device to control another.

Touch interactions with a smartphone could be used to trigger

events on another device in the interactive space. An example of

using gestures with one device to control another device is the

Keynote7 application for the iPhone. When the user swipes

between slides on the iPhone, this changes the slides on the

presentation screen. In the literature there is an example of using a

multitouch tabletop to control the interface of a mobile phone,

such as work by Olsen et al who presents a paper on “spilling”

control from one a mobile phone to a multitouch tabletop. [8].

5.3.2 Information-Passing Gestures

Certain gestures can be used to support information transfer

between applications running on different devices e.g. flicking

summoning or pouring. Gestures performed with devices seem

especially appropriate for this kind of task. Some work in the

literature exists describing these gestures. Bhandari and Lim

describe a system in which an entire smartphone is moved in a

specific way to trigger interactions [7]. For example, they

proposed the rotate gesture, which is triggered by rotating the

device from the horizontal to the vertical position. A throw and

pull gesture was shown by Döring et al. for communicating data

between a tabletop and a mobile device, and this gesture was also

used by Daschelt and Buchholz for communicating data to large

public displays [8,9]. Finally, the chucking gesture – a one handed

gesture using a mobile phone – was proposed by Hassan et al. as

another simple data-transfer gesture [10].

5.4 Existing APIs
Gjerlufsen et al. [1] developed an API – which they refer to as a

middleware layer – for developing multi-surface systems. This

API provides much of the functionality required for developing

these systems. It includes support for heterogeneous devices

(devices on different platforms), a communication layer, and

access to position information for devices in the interactive space.

While these are desirable characteristics, the API was developed

using a data-oriented programming model rather than the more

common object oriented approach. A data-oriented approach is

less common and thus, may make it more difficult for typical

developers to use this API. The API is also built at a relatively

low-level of abstraction. Both these issues make it difficult for

non-expert developers to use. Further, it’s not clear if the API

could be used with the widely available Kinect rather than the

VICON motion-capture system it was designed to use.

7 http://itunes.apple.com/ca/app/keynote/id361285480?mt=8

Figure 2: A “Flick” gesture transfering data from an iPad to

a wall sized display

http://itunes.apple.com/ca/app/keynote/id361285480?mt=8

Another existing API is the Proximity Toolkit developed by

Marquadt et al. [6].This API allows developers to work with

proxemic interactions, but it does not provide a communication

layer or support for other interaction types.

6. STATE OF IMPLEMENTATION
We are currently developing a prototype multi-surface system.

This prototype uses an Evoluce Tabletop, a SMART board and 2

iPads. The system also uses the Microsoft Kinect to gather

positional tracking and iPad’s internal gyroscope to provide

orientation tracking. We are experimenting with several physical

gestures for this system, such as flick, summon and pour, see

Figure 1 and Figure 2. In the flick gesture, the users swipe across

the iPad while pointing in the direction of the target device,

triggering an image transfer between the devices. The summoning

gesture allows users to pull content from a target, by rapidly

pulling back the iPad. Finally, by placing the iPad over the target

tabletop and rotating it on its side, the pouring gesture allows

users to transfer content to the tabletop. We intend to extend this

prototype into a complete API over the next several months.

7. FUTURE WORK
Our focus is on easing the implementation work involved in

setting up multi-surface interactive spaces by allowing developers

with non-specialist knowledge to do so. Therefore, we consider an

API usable if it exhibits high learnability. That is, developers who

are not networking specialists, for example, should be able to use

the API to set up network connections between devices easily and

efficiently. Similarly, all the tasks that are common to

implementing spatial awareness and communication between

devices should be supported by the API. The learnability of the

API can be evaluated with user studies – having users carry out

small but specific tasks with the API in a similar way to the study

by Stylos and Myers [13].

8. CONCLUSION
This paper has suggested that a lack of real world adoption of

interactive multi-surface systems is due to the lack of a learnable

API that is accessible to non-specialist developers. Versions of the

API need to be available on leading platforms such as Android

and iOS for mobile devices and Windows for tabletops and wall

displays. The API would need to solve ancillary tasks common to

setting up any multi-surface system but unrelated to the core

development goals of developers. These ancillary tasks include

spatial tracking and communication. We propose that a highly

learnable API targeted at non-specialist developers will reduce

costs, in terms of effort and money, and make interactive multi-

surface systems more widely available.

9. BIBLIOGRAPHY
1 Bolt, R. A. “Put-That-There”: Voice and Gesture at the

Graphics Interface. In Computer Graphics and Interactive

Technology (Seattle 1980), 262-270.

2 Gjerlufsen, T., Klokmose, C. N., Eagan, J., Pillias, C., and

Beaudouin-Lafon, M. Shared Substance: Developing Flexible

Multi-Surface Applications. In Human Factors in Computing

Systems (Vancouver, British Columbia, Canada 2011), 3383-

3392.

3 Shen, C., Esenther, A., Forlines, C., and Ryall, K. Three

Modes of Multi-Surface Interaction and Visualization. In

Human Factors in Computing Systems (Montreal, Quebec,

Canada 2006).

4 Streitz, N.A., Geißelr, J., Homber, T. et al. i-Land: An

Interactive Landscape for Creativity and Innovation. In Human

Factors in Computing Systems (Pittsburgh 1999), 120-127.

5 Beaudouin-Lafon, M. Lessons Learned from the WILD Room,

a Multisurface Interactive Environment. In French-Speaking

Conference on Human-Computer Interaction (Sophia

Antipolis, France 2011).

6 Bragdon, A., DeLine, R., Hinkley, K., and Morris, M.R. Code

Space: Touch + Air Gesture Hybrid Interactions. In Interactive

Tabletops and Surfaces (Kobe, Japan 2011), 212-221.

7 Marquadt, N., Diaz-Marino, R., Boring, S., and Greenberg, S.

The Proximity Toolkit: Prototyping Proxemic Interactions in

Ubiquitous Computing Ecologies. In User Interface Software

and Technology (Santa Barbara, California, USA 2011), 315-

326.

8 Olsen Jr., D. R., Clement, J., and Pace, A. Spilling: Expanding

Hand-Held Interactions to Touch Table Displays. In

Horizontal Interactive Human-Computer Systems (Newport,

Rhode Island 2007), 163-170.

9 Bhandari, S and Lim, Y. Exploring Gestural Mode of

Interaction with Mobile Phones. In Human Factors in

Computing Systems (Florence, Italy 2008), 2979-2984.

10 Döring, T., Shirazi, A.S., and Schmidt, A. Exploring Gesture-

Based Interaction Techniques in Multi-Display Environments

with Mobile Phones in a Multi-Touch Table. In Advanced

Visual Interfaces (Rome, Italy 2010), 47-54.

11 Dashelt, R. and Buchholz, R. Natural throw and Tilt

Interaction between Mobile Phones and Distant Displays. In

Human Factors in Computing Systems (Boston 2009), 3253-

3258.

12 Hassan, N., Rahman, M.M., Irani, P., and Graham, P. A One-

Handed Document Sharing Technique. In Human-Computer

Interaction (Berlin 2009), 264-278.

13 Stylos, J. and Myers, B. A. The Implications of Method

Placement on API Learnability. In International Symposium on

Foundations of Software Engineering (Atlanta 2008), 105-112.

