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Abstract 
Assisted history matching frameworks powered by stochastic population-based sampling algorithms have been a popular 
choice for real-life reservoir management problems for the past decade. These methods provide an ensemble of history-
matched models which can be used to quantify the uncertainty of future field performance. As a critique, population-based 
algorithms are generally considered black-boxes with little knowledge of their performance during history matching. In most 
cases, the misfit value is used as the only criteria to monitor the sampling algorithms and assess their quality. 
 
This paper applies three recently developed multidimensional projection schemes as a novel interactive, exploratory 
visualization tool for gaining insights to the sampling performance of population-based algorithms and comparing multiple 
runs in history matching. We use Least Square Projection (LSP), Projection by Clustering (ProjClus) and Principle 
Component Analysis (PCA) to examine the relationship between exploration of search space and the uncertainty in 
predictions of reservoir production. These projection techniques provide a mapping of the high dimensional search space into 
a 2D space by trying to maintain the distance relationships between sampled points. The application of multidimensional 
projection is illustrated for history matching of the benchmark PUNQ-S3 model using ant colony, differential evolution, 
particle swarm and the neighbourhood algorithms. 
 
We conclude that multi-dimensional projection algorithms are valuable diagnostic tools that should accompany assisted 
history matching workflows in order to evaluate their performance and compare ensembles of history-matched models. Using 
the projection tools, we show that misfit value - as an indicator of match quality - is not the only important factor in making 
reliable predictions.  We demonstrate that exploration of the search space is also a critical element in the uncertainty 
quantification workflow which can be monitored with multidimensional projection schemes. 
 
Introduction 
History matching is a process where the reservoir simulation model is conditioned to the available field data. It aims to tune 
the model in order to be consistent with the field performance. A simulation model which can capture the past life of a 
reservoir is more likely to make accurate predictions. History matching is an ill-posed inverse problem with non-unique 
solutions. Multiple realizations of the reservoir may give equally good matches to available data. Over the years our industry 
has moved from “in data we trust” to “in uncertainty we trust”. One of the main concerns in reservoir engineering studies is 
to get reliable production forecasts to make optimal management decisions both from technical and economical 
viewpoints.The ultimate goal of a history matching study is to have calibrated reservoir models with high prediction 
capability. 
 
Population-based optimization (sampling) algorithms have recently enjoyed growing popularity for tackling history matching 
problems. These systems work with a group of individuals that cooperate and communicate to accomplish a task that is 
normally beyond the capabilities of each individual. These individuals are deployed to search for multiple combinations of 
uncertain parameters of the simulation model that can give a good match to available field data.  This is achieved by 
minimizing an objective function value (misfit) defined for various targets such as pressures and rates in both well and field 
levels. Novel adaptive stochastic methods also provide the opportunity to balance exploration and exploitation while 
searching for optimal solutions. Exploration refers to the search of different areas in the parameter space while exploitation is 
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the refinement of the previously visited regions to find better answers. Genetic algorithm [Romero et al. 2000], evolutionary 
strategy [Schulze-Riegert et al. 2001], neighbourhood algorithm [Christie et al. 2002], ant colony optimization [Hajizadeh et 
al. 2009], differential evolution [Hajizadeh et al. 2010], particle swarm optimization [Mohamed et al. 2010], estimation of 
distribution algorithms [Abdollahzadeh et al. 2011] and hybrids of these methods are all examples of population-based 
sampling techniques that have been applied to history matching problems. The success of these algorithms has made them the 
primary choice for most of the current commercial assisted history matching packages.  
 
Population-based methods in general can also efficiently address the second aspect of any history matching study - 
uncertainty of the predictions. The uncertainty quantification is (usually) performed through combining a form of Monte 
Carlo technique with a proxy modeling algorithm (based on the samples obtained in history matching phase). The proxy 
modeling is required to eliminate the need for running a large number of full simulations in Monte Carlo techniques. 
 
One of the main concerns raised by people involved in history matching studies is that they have no or little information 
regarding the performance of sampling algorithms at the heart of their assisted history matching frameworks. Within this 
context, misfit value is usually the only choice for comparing different algorithms and ensembles of history-matched models. 
However, previous studies suggested that a good fitting model with a low misfit value is not necessarily a good predictor 
[Tavasolli et al. 2004]. 
 
In this paper, we propose a novel approach to visualize the sampling algorithms in an assisted history matching workflow 
which gives additional information about the performance of these algorithms. We discuss the relationship between the 
sampling performance of population-based algorithms and the uncertainty estimates obtained for future reservoir 
performance. The tools presented in this study can also help to decide the right balance between exploration and exploitation 
of search space in assisted history matching. 
 
 
Multi-Dimensional Projection 
In real-life history matching cases, we usually deal with a high-dimensional problem with many unknown variables being 
adjusted during the process. Handling the large number of unknowns is not only difficult from computational aspects of 
sampling in high dimensional spaces – i.e. curse of dimensionality [Bengtsson et al. 2008], but also poses a great challenge in 
visualizing the results. The challenge comes from the limited ability of the user’s visual perception and the number of 
dimensions that can be visualized. Considering each uncertain variable in history matching as a dimension, models in an 
assisted history matching framework using a sampling (optimization) algorithm can be viewed as vectors placed in a m-
dimensional space. Multidimensional projection provides a way to overcome this challenge by reducing the dimensionality of 
data and projecting the resulted points into a lower dimensional space (1D, 2D, 3D). This mapping aims at maintaining the 
distance relationship between the data points in the original space. However one should bear in mind that information loss 
during the projection process is unavoidable and the ultimate goal of the projection algorithms is to minimize such losses.  
 
Latest developments in the field of information visualization and novel multidimensional data visualization techniques can be 
a significant improvement to our understanding of the history matching process and the results we obtain. We aim to 
recognize the patterns in our results, understand the performance of the sampling algorithm and see how the algorithm has 
navigated the search space. Also, as stated by Buja et al. [2009], exploratory plots can take the role of test statistics and 
human cognition the role of statistical tests. This framework helps to furnish the visual data discovery with a tool to drive 
confirmatory inference on dependency and importance of various parameters in a modeling study. 
 
In the next section, we briefly introduce three multidimensional projection techniques (Least Square Projection, Projection by 
Clustering and Principle Component Analysis) that are implemented in the Projection Explorer (PEx) tool [Paulovich et al. 
2007] - publicly available from (http://infoserver.lcad.icmc.usp.br/infovis2/PEx). 
 
 
Least Square Projection (LSP) 
The Least Square Projection (LSP) technique was introduced by Paulovich et al. [2006] and is one of the most robust 
amongst projection methods, both in terms of computational cost and solution preciseness. The core of the method consists 
on solving a system of linear equations, whose solution is the final projection of the given dataset.  The assembly of such 
linear system is acquired through two main steps. In the first step, one equation is written for each instance, describing its 
final projected position as a dependency of it high-dimensional neighbors’ final positions. The idea is to preserve the original 
distances as much as possible in the projection process. 
 
Let us consider a set of points S = {p1, p2, …, pn} to be a dataset with n instances defined on Rm. Let Vi = {𝑝𝑖1 ,𝑝𝑖2 , … ,𝑝𝑖𝑘𝑖} 
be a set of ki points in a neighborhood of a point pi and 𝑝�Ri be the coordinates of pi in Rd, where d is the projection target 
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dimension. We write 𝑝�Ri in terms of the following equation: 
 
𝑝�𝑖 − ∑ 𝛼𝑖𝑗  𝑝�𝑗𝑝𝑗∈𝑉𝑖

= 0, 
                                                                                                                                                                                             (1) 
0 ≤ 𝛼𝑖𝑗 ≤ 1; �𝛼𝑖𝑗 = 1 
 
where 𝛼𝑖𝑗  is inversely proportional to the distance between 𝑝𝑖 and 𝑝𝑗 in the original space. Writing a similar equation to every 
instance in the dataset gives part of the LSP system, 
 
𝐿𝑝� = 0                                                                              (2) 
  
The entries of matrix L are given by: 
 

𝑙𝑖𝑗 =  �
1                  𝑖 = 𝑗

  −𝛼𝑖𝑗              𝑝𝑗 ∈ 𝑉𝑖   
     0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                                                              (3) 

 
The remaining equations of the system are acquired in a second step, which requires the selection of a subset of instances, 
called control points. An initial position in Rd is assigned to each one of the control points by a Multidimensional Scaling 
method (MDS). Each control point will add a new equation to the system, playing the role of a constraint, since the exact 
mapping from Rm to Rd is known. Thus, given 𝑛𝑐 control points, equation 2 can be rewritten as: 
 
𝑨𝒑� = 𝒃                                                                                                                                                                                 (4) 
   
where A is a rectangular matrix (𝑛 + 𝑛𝑐) × 𝑛 given by: 
 

A = �𝐿𝐶� , 𝑐𝑖𝑗 = �  1                         𝑝𝑗  𝑖𝑠 𝑎 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑜𝑖𝑛𝑡
0                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                      (5) 

 
And b is the vector given by: 
 

𝑏𝑖 = �
0                        𝑖 ≤ 𝑛

𝑝�𝑝𝑐𝑖       𝑛 < 𝑖 ≤ 𝑛 + 𝑛𝑐
                                                                                                                                              (6) 

 
where 𝑝�𝑝𝑐𝑖 is one of the cartesian coordinates of the control point 𝑝𝑐𝑖 . The solution of system (4) is 𝑝� that minimizes ‖𝐴𝑝� −
𝑏‖P

2 , which gives the final projection of the instances of the dataset. 
 
 
Projection by Clustering (ProjClus) 
The Projection by Clustering (ProjClus) technique was first introduced as an alternative to aid the categorization of text 
documents [Paulovich and Minghim, 2006]. However, the technique is general enough to handle any kind of high 
dimensional data. 
 
The technique is very simple and works as follows. Let X = (p1, p2, …, pn} be a dataset with n instances defined on Rm. The 
goal is to project set X to a lower (two) dimensional space (R2) while preserving their distance relationship given by a specific 
metric. If we define d(xi, xj) a proximity criterion between points in the original space and 𝑑̂(α(xi,), α(xj)) a proximity 
function in the projected space via the projection function (α), ProjClus aims to approximate the difference between d(xi, xj)  
and 𝑑̂(α(xi,), α(xj)) as close as possible to zero.    
 
ProjClus starts by splitting X into √𝑁 clusters denoted by S1, S2, …, Sk using the bisecting k-means technique. The 
subsequent step consists of calculating the centroid (C) of each cluster, arranging them as a new dataset C = {c1, c2, …, ck}. 
Afterwards, each cluster is individually projected to a lower-dimensional space (R2), as if they were separated datasets, using 
the Fastmap projection technique [Faloutsos and Lin, 1995]. As the last step, cluster centroids are projected to the 2D space 
using Fastmap. Finally, the projection of each cluster is repositioned in R2 according to its relative position to the centroids. 
 
 
Principle Component Analysis (PCA) 
Principle component analysis (PCA) is a class of linear projection techniques that aims to reduce the dimensionality of data 
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by transforming it into a new set of variables –principles components- that are linear combinations of the original variables.  
These components are ordered so that the first few of them represent the substantial proportion of the variation in all of the 
original variables. PCA operates by decomposing the covariance matrix of the data into m eigenvectors with m eigenvalues 
and selecting the first p eigenvectors with the largest eigenvalues to transform the m-dimensional space into a p-dimensional 
space. 
 
According to Hotelling [1933], for a given set of data vectors, the d principal axes are those orthonormal axes onto which the 
variance retained under projection is maximal. PCA uses a linear transformation to form a simplified data set keeping the 
characteristics of the original data. Assume that X is the original data matrix that contains m dimensions and n observations. 
In order to achieve the maximum variance, the principle component (Y) is written as a linear combination of X defined by 
coefficients or weights in matrix form: 
 
Y = wT X                                                                                                                                                                             (7) 
 
var (Y) = var (wT X) = wTSw                                                                                                                                               (8) 
 
where S is the sample covariance matrix of X. We choose w to maximize wTSw while constraining w to have unit length. PCA 
has been widely used for visualization of high dimensional data in various application domains [Yang et al. 2003] [Santos 
and Brodlie, 2004]. Recently an interactive version of this algorithm is proposed for visualization purposes [Jeong et al. 
2009]. For a discussion on challenges of integration between PCA and the visualization process, one can refer to [Muller et 
al. 2006].  
 
The next section will reexamine the history matching results of the PUNQ-S3 using ant colony, differential evolution, 
particle swarm and the neighbourhood algorithms, previously reported by Hajizadeh et al. [2011]. 
 
 
History Matching of PUNQ-S3 Reservoir Model 
PUNQ-S3 is a synthetic model based on a real-field reservoir in the North Sea operated by Elf Exploration and Production 
[Boss, 1999]. The PUNQ-S3 has been used widely to compare different history matching and uncertainty quantification 
workflows [Manceau et al. 2001] [Mantica et al. 2002] [Gao et al. 2007]. As described by Floris et al. [2001], the PUNQ-S3 
model has 5 layers with a top depth of 2430 meters. It is bounded by a fault to the east and south and has a relatively strong 
aquifer on the north and west that provides a pressure support. Six production wells are marked with black dots in figure 1. 
The PUNQ-S3 model has 19×28×5 grid blocks. The complete data set for this reservoir is available online [PUNQ, 2011].  
 
Recently, ant colony optimization, differential evolution, particle swarm optimization and the neighbourhood algorithms 
were successfully applied to history match the PUNQ-S3 reservoir [Hajizadeh et al. 2011]. The model was parameterized 
using 5 layers and 9 homogenous regions per layer. This led to 45 porosity values that were adjusted using the above 
mentioned population-based algorithms. Horizontal and vertical permeabilities then were obtained using the published 
deterministic relationship from least square fitting of the well data crossplots [Boss, 1999]. All of the history matching runs 
contain 3000 models. The detailed parameterization and objective function used for calculating the misfit values can be found 
in Hajizadeh et al. [2011]. Tables 1-4 present the tuning parameters and the best misfit values obtained in these runs.  
 
 

 
Table 1: Algorithm parameters and best misfit obtained for Ant Colony Optimization (ACOR) 

 
Number of ants k q Xi Generations Best Misfit 

50 50 0.4 0.7 60 1.83 
 
 

 
Table 2: Algorithm parameters and best misfit obtained for Differential Evolution (DE) 

 
Algorithm Np F Cr Generations Best Misfit 
DE-Rand 50 0.5 0.7 60 1.95 
DE-Best 50 0.5 0.5 60 1.45 
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Table 3: Algorithm parameters and best misfit obtained for Neighbourhood Algorithm (NA) 
 

nsi ns nr Generations Best Misfit 
50 50 50 60 4.07 

 
 

Table 4: Algorithm parameters and best misfit obtained for Particle Swarm Optimization (PSO) 
 

Swarm size Inertial Weight C1 C2 Generations Best Misfit 
50 0.8-0.4 1 2 60 1.51 

 
 
 

 
 

Figure 1: PUNQ-S3 reservoir model with top surface map and well positions 
 
 
Figure 2 shows the convergence graph for ACOR, DE, PSO and NA applied for history matching of the PUNQ-S3 reservoir. 
It plots the best misfit value in each generation vs. the generation number. Each generation of the algorithms used in this 
work contains 50 members. We can see that DE-Best and PSO have similar trends in convergence, while DE-Best obtains a 
slightly better final misfit. The NA exhibits a slow convergence with higher misfit values compared to other algorithms. We 
used extreme exploration setting for NA (ns/nr=1) to perform widest search [Sambridge, 1999 a]. Less explorative tunings 
resulted in larger misfit values, possibly due to over-refinement of local minima. 
 
Although figure 2 and the minimum misfits given in tables 1-4 provide some information about the performance of these 
algorithms and can be used as a basis for choosing the optimum solutions, some questions still remain open. For example, 
what is the difference between DE-Best and PSO in this case? While both DE-Best and PSO have a quick convergence and 
low misfit values, which ensemble should be selected for decision making?  
 
Some users in the history-matching community may think of sorting the results based on misfit values and selecting the top 
few models for their decision making. If we sort all 3000 models obtained in the above history matching problem based on 
misfit values and note down top five misfits, we get table 5. Again based on this table, we see that DE-Best and PSO are 
giving similar misfit values for their best models, while the gap between top misfit values are larger for NA and DE-Rand 
algorithms. Do the reported numbers in table 5 guarantee that DE-Best and PSO models will give a  good prediction for 
future production and results obtained from NA should be disqualified from being used in the uncertainty quantification 
study? These questions cannot be addressed using best misfit values and the convergence graphs. In other words, misfit value 
is not the only dictating criterion in selecting the history matched model(s) for further field development studies. 
 
 



6  SPE 152754 

 
 
Figure 2: Comparison of convergence speed for different algorithms in history matching of PUNQ-S3 model – [Hajizadeh et 

al. 2011] 
 
 
 

Table 5: Top five misfit values in an ensemble of 3000 history-matched models using various algorithms 
 

Algorithm Top five misfit values 
ACOR 1.83 1.91 1.92 1.93 1.96 

DE-Rand 1.95 2.35 2.41 2.48 2.65 
DE-Best 1.45 1.46 1.46 1.47 1.47 

PSO 1.51 1.51 1.52 1.52 1.52 
NA 4.07 5.24 5.63 5.68 5.89 

 
 
One idea to gain more information about the performance of these algorithms is plotting the sampled value vs. the simulation 
number for the parameters being adjusted in history matching. As there are 45 parameters in the PUNQ-S3 model, plotting 45 
separate windows for examining the performance of sampling algorithms for each individual variable is not an appealing 
idea. This brings the challenge of visualizing the sampling performance in high dimensions which can be addressed using 
multidimensional projection. 
 
 
Visualization of Results – Multidimensional Projection 
In this section, we present the ensembles of history-matched models projected on a 2D surface. These projections summarize 
the performance of various population-based sampling algorithms in navigating the 45 dimensional search space in the 
PUNQ-S3 problem. We deliberately did not include misfit values as a visualization component (color of the points) since the 
main idea behind the uncertainty quantification method used in this study is that all models (even the ones with high misfit) 
contain valuable information and contribute to uncertainty quantification [Sambridge, 1999 b]. Instead, we used color as an 
indication of the iterations of algorithms. This gives an idea about the start and end points of the sampling in time. 
 
In this section, the Euclidian distance is used as a measure of similarity between points. Euclidean distance is a special form 
of the general Minkowski metric (Lp) which is defined as: 
 
 

𝐿𝑝(𝒙𝑎,𝒙𝑏)= ∑ ��𝒙𝑖,𝑎 − 𝒙𝑖,𝑏�
𝑝�

1 𝑝�𝑑
𝑖=1                                                                                                                                    (9) 

 
For p=2, we have the Euclidean distance. Figure 3 and 4 present the projections using LSP and ProjClus algorithms and the 



SPE 152754  7 

Euclidean similarity measure. 
 

 
 

Figure 3: Projection of sampled models using LSP algorithm and Euclidean distance measurement 
 
 
 

 
 

Figure 4: Projection of sampled models using ProjClus algorithm and Euclidean distance measurement 
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Figure 5 shows the projection results using the PCA algorithm. 

 

 
 

Figure 5: Projection of sampled models using PCA 
 
 
 
The projections shown on Figures 3, 4 and 5 provide a totally new insight concerning the performance of population-based 
sampling algorithms during history matching. Vector selection strategy in differential evolution (DE) is reflected in these 
projection results.  In DE-Rand, the base vector for building the next generation of solutions is selected randomly, while in 
DE-Best, the solution with the lowest misfit is selected as the base vector. In the projection results we see the difference 
between the sampling performances of these two strategies of DE. A dense collection of points on the 2D projection indicates 
convergence of the algorithm towards a specific region of the parameter space in higher dimensions. We can also have this 
judgment about sampling for other algorithms. While PSO shows a similar behavior to DE-Best, the other three algorithms 
(DE-Rand, ACOR and NA) perform a wider search in the 45-dimensional search space. Among the latter three, ACOR gets 
more dense points and focuses in specific regions of the search space at the end. DE-Rand and NA demonstrate a very similar 
pattern in exploring the possible solutions, however in final iterations DE-Rand explores a specific region of the space. 
 
The projection graphs provide a very quick and useful tool to compare various ensembles of history matched models and 
understand their differences. This can be a valuable tool in selecting the ensemble that better fits in the scope of the project 
for decision making. 
 
 
What if we choose another distance measure? 
All multidimensional projections techniques use a measure of proximity (similarity) to build their projections. The choice of 
similarity or distance may have a strong impact on the projection results. In the above section, we chose the widely used 
Euclidean distance. In this section, we look at two alternate distance measures. 
 
The city block distance or the “Manhattan” metric is another form of the Minkowski metric where p=1 in equation 9. City 
block is the first distance measure that we are going to use as an alternate to the Euclidean measure in this section. The 
extended Jaccard is the second similarity measure that we will be investigating. It was introduced by Strehl and Ghosh [2000] 
and is defined using the following equation: 
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𝑠(𝑗)(𝑥𝑎, 𝑥𝑏) = 𝑥𝑎𝑇𝑥𝑏
‖𝑥𝑎‖22+‖𝑥𝑏‖22+𝑥𝑎𝑇𝑥𝑏

                                                                                                                                              (10) 
 
 
 
The original Jaccard coefficient measures the ratio of the intersection of the product sets to the union of the product sets for 
binary features. The extended Jaccard similarity takes the Jaccard measure a step forward and captures a length-dependent 
measure of similarity for real-valued features. 
 
Few works consider the effect of different measures of similarity on the performance of data exploration, knowledge 
discovery and projection algorithms. Glazko and Mushegian [2010] studied the performance of various distance 
measurements in gene expression profiles and concluded that different trends exist in the high dimensional data and different 
similarity measures highlight different some of these trends. Pereira et al. [2009] performed a study for the similar problem 
and stated that Euclidean distance has the advantage of not amplifying the noise. Strehl et al. [2000] compared the 
performance of four popular similarity measures (Euclidean, cosine, Pearson correlation and extended Jaccard) in 
conjunction with clustering algorithms in high dimensional web-document clustering. They concluded that the Euclidean 
measurement had the poorest performance, while cosine and extended Jaccard measures were the best measure to capture 
human categorization behavior. Rady [2011] stated that for face recognition problems, Euclidean distance performs better 
than the city block measure. Reviewing these literatures, we understand that the choice of similarity measurement very much 
depends on the application and domain knowledge and no global recommendation can be made.  
 
Figure 6 and 7 show the results of projection for LSP and ProjClus algorithms using the city block distance measurement. 
 

 
 
 

Figure 6: Projection of sampled models using LSP algorithm and city block distance measurement 
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Figure 7: Projection of sampled models using ProjClus algorithm and city block distance measurement 
 
 
 
Figures 8 and 9 present the projections using extended Jaccard measurement in LSP and ProjClus algorithms. 

 

 
 

Figure 8: Projection of sampled models using LSP algorithm and extended Jaccard distance measurement 
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Figure 9: Projection of sampled models using ProjClus algorithm and extended Jaccard distance measurement 
 
 
The choice of distance measurement between points has some slight impacts on the projections of history-matched models. 
For example in the ProjClus algorithm, the city block measure (figure 7) makes the clusters appear more dispersed in 
comparison with the Euclidean distance measure (figure 4). The LSP and ProjClus results tend to be denser using the 
extended Jaccard distance measure in comparison with both city block and Euclidean measures. This is especially true for the 
ProjClus algorithm where we can observe very compact clusters in figure 9. Although the choice of distance measure leaves 
its footprints in the projections, the results we obtain from comparing different history-matched models and their sampling 
performance are valid for all of the distance measures we have explored in this paper. 
 
Uncertainty and the Multidimensional Projections 
After exploring the search space and generating the ensemble of models by different optimization (sampling) algorithms, the 
next step is to draw inference from the completed ensemble of history-matched models. In a Bayesian framework, the 
analytical solution of posterior probability requires the integration of the likelihood function over the all possible values of 
the remaining parameters. In this work, the NA-Bayes (NAB) algorithm [Sambridge, 1999 b] is used for posterior inference. 
NAB is a Markov chain Monte Carlo (McMC) method which builds an approximation for the real posterior probability 
distribution (PPD) using a Gibbs sampler. In general, each sampling performed by a McMC method requires evaluation of 
the objective function at the specific point. The NAB routine requires that forward simulation has been performed for all of 
the models in ensemble and their (mis)fit to observed data are known. This step has already been performed using various 
sampling algorithms – in this work ACOR, DE, PSO and NA. 
 
Before we investigate the relationship between the multidimensional projections and the uncertainty in estimation of the 
ultimate recovery in our PUNQ-S3 example, we first briefly review the working mechanism of NAB algorithm. Figure 10 
summarizes the procedure of the NAB algorithm for a two dimensional problem. The algorithm starts the first step from an 
arbitrary location (a model in the sampled ensemble) and performs a series of random walks along each parameter axis in 
turn. For each axis (parameter), a conditional probability distribution function (PDF) is created for the full parameter range 
(for example the XX’ or YY’ cut line in figure 10). The probability is determined from the product of the PPD value and the 
width of the intersection. Each walk is performed on the selected axis by generating a uniform random deviation from the 
conditional PPD along the axis. After many independent walks starting from different locations, the constructed conditional 
PDF is believed to be a good approximation to the true posterior distribution. This process can be visualized as several 
thousand scans of the PPD surface on the parameter axes. 
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Figure 10: Working mechanism of the NAB algorithm 
 
 
Reviewing the procedure of the NAB algorithm, we understand that the accuracy of the algorithm depends on the 
representation of the search space using Voronoi cells. NAB uses Voronoi cells as a surrogate to represent the model space 
and to interpolate the PPD of unknown points in the search space. This carries an assumption that the misfit value is constant 
over each Voronoi cell. The interpolation of the misfit surface relaxes the need for running a forward reservoir simulation for 
posterior sampling. The complexity of the misfit surfaces and the size of samples to represent the search space will affect our 
prediction and the uncertainty associated with it. The shape and size (volume) of Voronoi cells are determined by distribution 
of the models obtained using the sampling algorithm. This can be problematic in cases where there is a complex misfit 
surface (large change of misfit value within short distance) or a limited number of samples (large Voronoi cells).  
 
Figure 11 shows the uncertainty of the predictions obtained after running the NAB algorithm on the ensemble of history-
matched models using ACOR, DE (Rand & Best), PSO and NA. 
 

 
 

Figure 11: Uncertainty estimates for ACOR, DE, PSO and NA 



SPE 152754  13 

 
 
The forecast ranges from all algorithms used in this work comfortably cover the truth total production from PUNQ-S3 model. 
We notice that PSO and DE-Best over-estimate the total oil recovery. DE-Best gives an estimate which is slightly closer to 
the truth solution in this case. An interesting observation is the range given by NA which had a relatively poor performance 
during history matching process.  
 
Comparing the projections of sampled models with the uncertainty estimates presented in figure 11, we can see a relationship 
between these two. PSO and DE-Best quickly converge to a specific region of the search space in the projection figures and 
this is reflected in their over-estimation of the uncertainty. The sampling performance of DE-Rand and NA are very similar 
and both cover a wide area (volume) of the search space. Consequently, the uncertainty envelope and P50 values obtained 
from these two ensembles are similar and close to the truth ultimate recover. We can also draw the same conclusion for 
ACOR algorithm with its wide sampling behavior.  
 
The ability of sampling algorithms to give accurate uncertainty estimates is partially linked to the quality of underlying proxy 
model used for McMC sampling. In our uncertainty quantification framework, the search space is partitioned using Voronoi 
cells with an assumption that misfit value is constant and equal to misfit of the sample used to generate that cell. Obviously 
the number and quality of the sampled points used in building the Voronoi cells affect the results of random walks performed 
by McMC for uncertainty quantification purpose. A quick convergence to a specific region of the search space may result in 
having large Voronoi cells for other regions with constant misfit surfaces. However there might exist some local minima in 
those unexplored regions which do not go well with the assumption of constant misfit over that region in performing a 
random walk.  
 
Although not backed by solid experiments in this study, the above concept should also be true for other proxy modeling 
techniques used in uncertainty quantification. The power of a proxy model depends on the samples used to build it. Having a 
poor quality proxy model in some regions of the search space may result in unrealistic estimates of production (or other target 
values) in uncertainty quantification. 
 
In agreement with a study performed by Tavasoli et al. [2004] that showed a good history-matched model does not 
necessarily lead to a good prediction, we demonstrate an example (NA) where a not-so-good model in the history matching 
phase gives a reasonable forecast envelope due to its wide sampling of the search space. This study suggests that in the 
history matching context, exploration of search space is more important that the exploitation phase. On the other hand, size of 
model and available resources to run simulations play an important role in selecting the maximum number of simulations in a 
history matching study. 
 
While this study shows the importance of exploring the search space, it does not suggest a pure random search to cover a 
large portion of search space as an effective strategy in history matching. Wan and Igusa [2003] discussed the need for 
greater accuracy in regions of the search space corresponding to low misfit values and the benefits of adaptive sampling 
methods to satisfy this purpose. This study once again stresses the importance of exploration vs. exploitation in assisted 
history matching using population-based sampling algorithms.  
 
 
Conclusions 
This paper provides a roadmap to incorporation of multidimensional projections as a part of assisted history matching 
frameworks. These tools can be utilized to check the performance of evolutionary sampling algorithms during/after history 
matching. The multidimensional projection allows a quick comparison between ensembles of history matched models using 
different stochastic population-based methods and/or different tuning parameters of these algorithms. These plots can be used 
together with the misfit convergence graphs in history matching to gain a better understanding of the sampling process. 
 
The projections can also help in deciding the right amount of exploration vs. exploitation in assisted history matching 
frameworks. The choice of convergence speed vs. sampling coverage is affected by the goals of project and the available 
computer resources. However this study suggests that a more exploratory setting for population-based algorithms in history 
matching is favorable. This is tied with the uncertainty quantification step where we can obtain a more reliable proxy tool to 
run a Monte Carlo job. 
 
The choice of distance measurement used to check the similarity of sampled points has a slight impact on the projection 
results. This does not render the conclusions drawn from comparing various ensembles in this work invalid. The comparison 
between projection schemes and the distance measure in this work is mainly visual. We will keep working on bringing a 
more formal framework for comparing the performance of projection algorithms that incorporates the measures for 
computational efficiency, quality of uncertainty estimation and behavior in projecting noisy data. These results will be useful 
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in designing better assisted history matching workflows. 
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