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Abstract 
Current frameworks for optimization and assisted history matching lack the ability to control and guide the sampling engine 
and to incorporate geo-engineering knowledge. Defining the interactions between uncertain parameters and handling multiple 
constraints are also arduous tasks. Despite recent advances in adaptive population-based sampling algorithms and other 
gradient and ensemble-based methods, these specific drawbacks have left engineers with several history-matched models that 
are inconsistent with the physical and geological knowledge of the field. 
 
We introduce a novel rule-based framework based on fuzzy reasoning to integrate engineering knowledge with optimization 
and assisted history matching workflows. The system can handle multiple complex constraints both in parameter and 
objective function space. The use of fuzzy set theory in this workflow is a natural way to address uncertainty arising from 
imprecision of definition. This type of uncertainty is important in expressing the parameters of interest; however, it has been 
less addressed in existing workflows. The proposed system can be coupled with any algorithm used for assisted history 
matching, including gradient-based, population-based and particle filter approaches. 
 
The framework is coupled with differential evolution algorithm and is tested for three cases. The results show that fuzzy rule-
based engine preserves the computational efficiency of the sampling engine, while allowing for definition of flexible rules in 
history matching and optimization that honor engineering knowledge. 
 
Introduction 
History matching involves calibration of a reservoir simulation model by conditioning it to field dynamic data. The basic idea 
is centered on a belief that a model is more probable to provide accurate predictions if it can successfully reproduce the 
historical behavior of the reservoir. Dating back to the early 60s [Kruger, 1960] [Jacquard and Jain, 1965], history matching 
was done manually by reservoir engineers. The end result, after a time-consuming process, was usually a single history-
matched model. However, history matching is an inverse problem with non-unique solutions (i.e. different combinations of 
input parameters may provide a satisfactory match). To have reliable estimates of future field performance, it is essential to 
have multiple history-matched models with a diverse range of production behaviors to represent uncertainty. 
 
It was in the early 90s that the power of stochastic sampling algorithms came to help engineers in history matching and field 
optimization. Pioneering works were presented by Ouenes et al. [1992] using simulated annealing (SA) and Sen et al. [1995] 
using genetic algorithm (GA). The journey continued with evolutionary strategies [Schulze-Riegert et al. 2001], 
Neighbourhood Algorithm (NA) [Christie et al. 2002] and scatter search [Sousa et al. 2006]. Several factors make these 
algorithms an excellent choice for tackling history matching problems. As they work with a population of solutions in each 
generation, an ensemble of history-matched models is produced which can be used to quantify the uncertainty of predictions. 
These algorithms provide a mechanism to control the exploration/exploitation trade-off through a set of tuning parameters 
that can be utilized depending on the characteristics of the problem in hand. Population-based algorithms are also easy to 
implement/parallelize and are more robust in comparison with point-based methods in dealing with noisy objective functions 
[Nissen and Propach, 1998]. 
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To address the limitations in time and computing power in assisted history matching, recent research has focused on 
improving the speed and solution diversity of population-based sampling algorithms. Sampling methods used in history 
matching must be fast in exploring high-dimensional parameter spaces and efficient in finding multiple models using a 
limited number of simulations. Ant Colony Optimization (ACO) [Hajizadeh, 2010], Differential Evolution (DE) [Hajizadeh 
et al. 2010] [Rahmati et al. 2011], Particle Swarm Optimization (PSO) [Kathrada, 2009] [Mohamed et al. 2009] and 
Estimation of Distribution Algorithms (EDAs) [Petrovska and Carter, 2006] [Abdollahzadeh et al. 2011] are all the fruits of 
research in this direction. 
 
Although population-based methods have a proven track record of success in both academic research and real-world history 
matching problems, they are often criticized for being a black-box tool. The lack of ability to control and guide the 
optimization (sampling) algorithm and the difficulty to handle engineering constraints have resulted in many models that 
perfectly match field data but fail to represent relationships between parameters or satisfy constraints. 
 
In current frameworks used for history matching, usually two types of constraints exist: hard and soft. Hard constraints are 
not to be violated under any circumstance. If a parameter in the input or/and output space violates a hard constraint, the 
simulation will terminate and that function evaluation either will be ignored or will be repeated with a new set of parameters. 
On the other hand, soft constraints are less vital and are allowed to be violated. Should this happen, the sampling effort will 
continue but a predefined penalty is added to the actual objective function. The goal is to make the violating solution less 
attractive to the sampling engine, so it is not selected to proceed to the next iteration. Soft constraints can also be used to 
handle the relationship between input and output parameters. 
 
Adding a penalty in constraint-handling systems, however, may act as a double-edged blade. The problem comes from the 
fact that it is necessary to define a real number as the threshold of constraint violation. If the parameter value is higher or 
lower than this threshold, a penalty will be applied to the objective function. Imagine we are defining violation thresholds for 
a history matching problem and working with porosity and permeability values in several layers of a reservoir. Based on core 
studies, we have noticed there is relationship between porosity and permeability in the first layer such that if porosity is 
higher than 15%, then permeability is higher than 130 mD. Also the value of permeability in layer 1 is correlated with 
permeability in layer 4 due to the geological structure. This creates a complex case for history matching from two distinct 
aspects. First, the sampling algorithms should be able to handle these complex relationships between parameters and second, 
the values are based on core sample studies which are uncertain [Chappell and Lancaster, 2007] and may even depend on the 
lab performing the measurements [McPhee and Arthur, 1994]. A similar scenario can be considered for a field optimization 
problem where we have concerns about water-cut threshold. In defining the threshold and penalty values, the following 
critical questions should be asked: 
 
 

1- What is the difference between porosities of 19.999% and 20.001%? Although the difference is negligible from an 
engineering point of view, this can make an impact on the performance of the sampling algorithm and the penalties 
applied to objective function. 

2- How should the uncertainty in the definition of input/output parameters be addressed? 
 
 
In this work, we introduce a process to incorporate engineering knowledge and handle constraints in assisted history 
matching and optimization frameworks. This is achieved by integration of a rule-based fuzzy system with population-based 
sampling algorithms used for history matching and field optimization. The fuzzy inference engine reflects how engineers and 
software users make decisions regarding the definition of parameter values/relationships and constraint-violation thresholds. 
The workflow will also make it easier to handle the uncertainty arising from imprecision of definition in input/output search 
spaces. 
 
Fuzzy Sets 
Fuzzy set theory was introduced by Zadeh [1965]. He stated that “As complexity rises, precise statements lose meaning and 
meaningful statements lose precision”. Zadeh’s theory aims to obtain approximate solutions in problems where we deal with 
uncertain and vague system descriptions. Fuzzy concepts have blurred boundaries between numbers through computation 
with words. Unlike Aristotelian logic which looks at the world in a black and white manner, fuzzy logic considers transition 
zones between numbers or grey colors.  
 
Fuzzy logic can be used to deal with uncertainty. According to Blockley and Godfrey [2000], there are three types of 
uncertainty that we need to recognize: randomness, fuzziness and incompleteness. Randomness uncertainty is defined as the 
lack of specific patterns in variables. Incompleteness uncertainty is related to lack of data and refers to what we do not know 
about the system under study. Incompleteness is the most common source of uncertainty in petroleum engineering and has 
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been the primary objective for proposing uncertainty quantification workflows. Fuzziness is defined as the imprecision of 
definition. The imprecision might be due to the measurement process or the way we decide to express the parameters of 
interest. This type of uncertainty has not been adequately addressed in history matching problems and it can be treated with 
fuzzy logic and fuzzy set theory. Fuzzy variables and parameter estimation have been shown to be helpful in uncertainty 
quantification [Moller et al. 2002] and there are examples where fuzzy logic has been used to handle uncertainty in 
geoscience applications [Nikravesh et al. 2003] [Wong et al. 2002].  
 
Looking at the reservoir engineering field in general and history matching in particular, where we deal with uncertain 
description of the underground reservoir, fuzzy logic is an effective way to handle the challenges associated with vague 
parameter descriptions. Figure 1 shows a fuzzy description of a rock sample and its comparison with an exact (but uncertain) 
definition. 
 

 
Figure 1: Exact vs. fuzzy description of a reservoir rock sample [Hajizadeh, 2011] 

 
 
Figure 2 illustrates the smooth transition between sets in fuzzy logic for the permeability example. Fuzzy set A is defined by a 
real value function µA(x) = [0,1] called the membership function of A, which assigns to every element of x a real number 
between 0 and 1 (degree of membership). For example, a permeability value of 44 mD belongs to the set of “low” with a 
membership degree of 0.18 and to the set of “medium” with a membership degree of 0.82 or: 
 
µLow (44 mD) = 0.18   and   µMedium (44 mD) = 0.82           
 
 

 
Figure 2: Fuzzy membership functions for permeability [Hajizadeh, 2011] 

 
Approximate Reasoning 
Fuzzy reasoning allows decision making based on fuzzy linguistic variables (high, low) and fuzzy operators (and/or). 
Approximate reasoning is based on fuzzy propositions of the various types in the form of if-then rules. To illustrate the 
concept, we return to our previous example to determine the oil production using following rules: 
 
IF permeability is low AND porosity is medium THEN oil production is low. 
IF permeability is high AND porosity is high THEN oil production is high. 
IF permeability is medium AND porosity is medium THEN oil production is medium. 
 
In the set of rules defined for the above example, the terms “low”, “medium” and “high” can be defined for porosity and oil 
production using the same procedure we have used for permeability. The membership functions can take any shape; some 
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popular choices include triangular, trapezoidal or smooth functions such as Gaussian distributions [Zhao and Bose, 2002]. 
Figure 3 shows the general framework for a fuzzy inference system. The reservoir engineer’s knowledge and historical field 
data are used to build the fuzzy rule-based system. Crisp inputs are fuzzified using input membership functions and are then 
processed in the fuzzy inference system. The inference system drives its judgment based on the rule-based section of the 
workflow and produces fuzzy outputs. These outputs are then defuzzified to obtain crisp values for the output parameters. 
 
 

 
 

Figure 3: Fuzzy inference system for reservoir engineering 
 
 
Fuzzy Rule-Based History Matching and Optimization 
Most of the methods used for assisted history matching need some higher-level user supervision. The results must be checked 
to select appropriate outputs and eliminate unrealistic models. A fuzzy rule-based system tends to bring an “intelligent” 
supervision component to current assisted history matching workflows to eliminate or reduce the need for higher-level human 
control. This can gradually transform current assisted history matching frameworks to fully automatic frameworks with the 
expert knowledge being embedded in the system [Iqbal and Dar, 2009]. 
 
The essence of this system is a set of IF-THEN rules derived from reservoir engineering knowledge. As shown in Figure 4, a 
fuzzy rule-based system can check the results of optimization against expert knowledge and previous field data and provide a 
guideline to the sampling algorithm for producing the next set of solutions. 
 

 
 

Figure 4: Suggested workflow for embedding reservoir engineering knowledge in history matching by integrating a fuzzy 
rule-based system [Hajizadeh, 2011] 

 
 
Integration of Fuzzy Rule-Based System with Differential Evolution 
Differential Evolution (DE) is a fairly recent global optimization algorithm for solving problems in continuous space [Storn 
and Price, 1995]. DE has been proven to be very efficient in different computer science and engineering fields [Price et al. 
2005] [Chakraborty, 2008]. Different studies also show that the differential evolution algorithm achieves better results in 
comparison with other optimization methods such as simulated annealing [Storn and Price, 1995] and different 
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implementations of genetic algorithms [Cruz et al. 2003] [Biesbroek, 2006].  
 
Like other stochastic methods, DE starts with a randomly generated first generation which consists of Np vectors. After 
initialization of the algorithm and obtaining objective function values, in the second step two vectors are randomly selected 
among the current population. Then the difference vector between two selected members is computed. In the next step, the 
difference vector is multiplied by a real number called the scaling factor (F∈ [0, 2]). The scaling factor controls the amount 
of perturbation introduced to the difference vector. We then select another vector in the population and we add the scaled 
difference vector to this new individual. After a crossover stage which increases population diversity, objective function 
values are evaluated for each vector in the population. Finally, in the selection step, each trial vector competes against the 
population vector of same index. If the trial vector has a lower objective function compared with the initial individual 
number, it will be selected for the next generation. 
 
In integrating the fuzzy rule-based system with differential evolution, we follow the original steps for DE and do not modify 
the internal mechanism. Instead, a penalty function is defined for penalizing solutions that disobey the rule-based system. In 
other words, DE builds a new set of solutions in each generation and runs a function evaluation (a reservoir simulation) for 
each member of the population. After function evaluations, the set of input parameters or objective function values are 
compared with the rule-based system and depending on the degree of disobeyance, a penalty value is added to the original 
objective function value. In some cases, we define a negative penalty function to actually reward the solutions that fit well 
with the rule-based system to make them attractive candidates for proceeding to the next generation. The following pseudo-
codes describe the general workflow. 
 

Fuzzy Rule-Based Differential Evolution Check C[i] with fuzzy rule-based system 
Initialize and evaluate population P 
while (stopping criteria not met) { 
for (i = 0 ; i <  Np ; i++) { 
Create candidate C[i] 
Evaluate C[i] 
Check C[i] with fuzzy rule-based system 
Add penalty 
if (C[i] is better than P[i] 
P′[i] = C[i] 
else 
P′[i] = P[i] 
        } 
P = P′ 
} 

Define the rules for fuzzy system 
 
Fuzzify input parameters of C[i] 
 
Pass fuzzy inputs to fuzzy inference engine 
 
Determine fuzzy penalty value using the rule-
based system 
 
Obtain fuzzy penalty value 
 
Defuzzify the penalty value and add to actual 
objective function value 

 
 
Examples 
We illustrate the integration of fuzzy inference with differential evolution algorithm for three examples. The first example is 
a benchmark test function for multiobjective optimization. The other examples are based on field and relative permeability 
history matching problems. Table 1 summarizes the examples, their nature and the specific goals of each problem. 
 
 

Table 1: Examples used in this paper to illustrate the concept of rule-based optimization and history matching 
 

Example Nature Goal 
ZDT function Objective function space Interaction between multiple objectives 

Teal South Parameter search space Direct modification of rock and aquifer parameters 
SPE-9 Parameter search space Modification of relative permeability curves 

 
 
ZDT Test Function for Multiobjective Optimization 
Multiobjective optimization problems deal with multiple criteria (often in competition or in contrast with each other) that 
should be minimized or maximized. In these problems, we are looking to find the true Pareto front which indicates the 
optimal solutions for the multiobjective problem. This means the solutions on the Pareto front cannot be improved in one 
objective without causing some degradation to the other objective(s). A good multiobjective optimization algorithm should 
converge to the Pareto front and at the same time maintain diversity of the solutions on the front. Some common examples of 
multiobjective problems in petroleum engineering include maximizing oil recovery while minimizing the injected gas in gas 
lift [Ray and Sarker, 2006] or maximizing oil production while minimizing treatment costs in designing hydraulic fracturing 
operations [Rahman et al. 2001]. 
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Zitzler [et al. 2000] proposed a standard benchmark test suite with six functions for multiobjective optimization problems. In 
this paper, we have selected the ZDT3 function to test our new workflow. The test function has 30 decision variables and 
discontinuities in the Pareto-optimal front. It is characterized by the following equations: 
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where n = 30, and xi [0,1]. The Pareto front is formed with g(x) = 1 and is displayed in Figure 6 with red lines. Previously it 
was shown that a large number (25000) of random solutions was not able to capture the Pareto front and a multiobjective 
differential evolution algorithm using Pareto ranking was proposed to tackle this problem [Hajizadeh et al. 2011]. In this 
work, we aim to solve the problem using a single global-objective differential evolution algorithm coupled with the fuzzy 
rule-based system. In this example, a global objective function is formed by summing up f1 and f2 values. Differential 
evolution is then used to minimize this global objective function. We use the “best” strategy in DE which takes the vector 
with the best (lowest) objective function value in the previous generation and uses it as the base vector for building the next 
generation solutions. Table 2 summarizes the tuning parameters used for this test. 
 
 

Table 2: Tuning parameters of differential evolution algorithm with “best” strategy in ZDT3 function 
 

Np F Cr Generations 
100 0.3 0.3 250 

 
 
For the ZDT3 function, we have designed the fuzzy rule-based system in the objective function space. Figure 6(a) shows the 
performance of a single-objective DE algorithm for finding the Pareto fronts indicated by red lines. All solutions on the 
Pareto front are considered to be optimum; however, the algorithm can only identify the front in the lower right corner 
(higher values for objective 1 and lower values for objective 2). To tackle this problem, a fuzzy rule-based system is designed 
to favor the solutions which lead to lower values for objective 1 and higher for objective 2 with a hope to cover all possible 
Pareto fronts. Figure 5 shows the rule-based system with two axes for objectives 1 & 2 and a third axis for the penalty value. 
If the solutions of DE provide a higher value for objective 1, they will be heavily penalized. Both inputs (objective 1 and 2) 
and output (penalty value) are defined in the range of (0,1). This range is divided into five regions using Gaussian 
membership functions. These membership functions will be used to fuzzify and defuzzify input/output parameters in the 
fuzzy inference system. Table 3 summarizes the mean and variance of the Gaussian fuzzy membership functions used to 
describe the parameters and penalty function value. 
 
 

Table 3: Mean and variance for Gaussian membership functions used for input and output parameters in ZDT3 function 
 

lowlow low mid high highhigh 
Inputs (Obj1, Obj2), Output (Penalty)  0, 0.2 0.25, 0.2 0.5, 0.2 0.75, 0.2 1, 0.2 

 
 
The following rules are defined for the fuzzy inference system: 
 

 If (objone is highhigh) and (objtwo is lowlow) then (penalty is highhigh) 
 If (objone is highhigh) and (objtwo is low) then (penalty is high) 
 If (objone is low) and (objtwo is highhigh) then (penalty is low) 

 
 
Figure 6(b) shows that using a single-objective DE algorithm coupled with fuzzy inference, we are able to identify more 
disconnected Pareto fronts. The results indicate that a fuzzy penalty function can help to guide the differential evolution 
algorithm towards the regions of interest in objective function space (higher values for objective 2, lower value for objective 
1). 
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Figure 5: Fuzzy system for determining penalty value for the objective function in ZDT 3 example 

 
 

Figure 6: (a) Original DE result for ZDT-3 function and (b) DE integrated with fuzzy rule-based system 
 
 

Teal South Reservoir 
The second example we use to demonstrate the application of our rule-based system is a history matching problem. The Teal 
South reservoir is located in block 354 of Eugene Island in the Gulf of Mexico. The reservoir simulation model is set up on a 
11×11×5 corner point grid (Figure 7-left) [Hajizadeh, 2011]. The reservoir history data consist of monthly production rates of 
oil, gas and water for 3.5 years (Figure 7–right). There are five geological layers in the model with uniform properties. The 
unknown parameters in history matching are horizontal permeability multipliers for each of these five layers (P1-P5), a single 
value for vertical to horizontal permeability ratio (P6), rock compressibility (P7) and aquifer strength (P8). History matching 
is only done on field oil production rate using all available production data. Parameterization for the Teal South model and 
their prior ranges are shown in Table 4. 
  
 

Table 4: Parameterization and prior ranges for the Teal South model 
 

Parameters Units Prior range 
kh (for each layer)  mD 10 - 1000 

kv/kh  - 10-4 – 10-1 
Rock compressibility psi-1 5×10-6  - 1×10-4 

Aquifer strength MMSTB 107 - 109 
 
 

(b) (a) 
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Figure 7: Teal South reservoir model (left) and production history of the reservoir (right) 
 
 
The following objective function is used to calculate the misfit value for the Teal South model:  
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where N is the number of observations, q is the flow rate for observed and simulated oil production data, and σ2 is the 
variance of the observed data. 
 
Based on core analysis, we assume two scenarios to demonstrate the fuzzy rule-based system. Both scenarios consider a 
relationship between horizontal permeability in layers 3 and 4 (P3, P4). In the first case we assume that if P3 is low or very 
low, then P4 should be medium. In the second case, engineers believe that if P3 is medium, then P4 should be medium too. It 
should be remembered that the “linguistic” rules are backed with fuzzy membership functions. In the Teal South example, the 
range for P3 and P4 is defined in (0,1) and for the penalty value, the range is in (-5,30). After the parameter values are 
selected for P3 and P4, they are scaled to the original range stated in Table 5 and are replaced in the simulator’s input deck. 
Table 5 summarizes the mean and variance for the Gaussian membership functions used in the fuzzy inference system for 
input and output parameters. For example, a “low” value for P3 is characterized by a Gaussian function which has a mean of 
0.25 and a variance of 0.2. This allows considering uncertainty in parameter definition and relaxes the engineer in dealing 
with uncertain numbers and applying his knowledge to history matching. 
 
 

Table 5: Mean and variance for Gaussian membership functions used for in the Teal South example 
 

lowlow low mid high highhigh 
Inputs (P3 & P4) 0, 0.2 0.25, 0.2 0.5, 0.2 0.75, 0.2 1, 0.2 
Output (Penalty) -5, 1 3,1 15,1 20,1 30,1 

 
The fuzzy inference system is based on following set of rules for Cases 1 and 2. Figure 8 shows the graphical representations 
of the fuzzy inference system: 
 
Case 1:  
 
1. If (P3 is low) and (P4 is mid) then (penalty is lowlow) 
2. If (P3 is lowlow) and (P4 is mid) then (penalty is lowlow) 
3. If (P3 is highhigh) and (P4 is lowlow) then (penalty is highhigh) 
4. If (P3 is lowlow) and (P4 is highhigh) then (penalty is high) 
5. If (P3 is highhigh) and (P4 is highhigh) then (penalty is highhigh) 
6. If (P3 is lowlow) and (P4 is lowlow) then (penalty is highhigh) 
7. If (P3 is mid) and (P4 is lowlow) then (penalty is high) 
8. If (P3 is high) and (P4 is low) then (penalty is highhigh)  
9. If (P3 is low) and (P4 is highhigh) then (penalty is highhigh) 
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Case 2: 
 
1. If (P3 is mid) and (P4 is mid) then (penalty is lowlow) 
2. If (P3 is high) and (P4 is mid) then (penalty is low) 
3. If (P3 is lowlow) and (P4 is lowlow) then (penalty is highhigh)  
4. If (P3 is lowlow) and (P4 is highhigh) then (penalty is highhigh) 
5. If (P3 is highhigh) and (P4 is highhigh) then (penalty is highhigh) 
6. If (P3 is highhigh) and (P4 is lowlow) then (penalty is highhigh) 
7. If (P3 is highhigh) and (P4 is mid) then (penalty is highhigh) 
8. If (P3 is mid) and (P4 is lowlow) then (penalty is highhigh)  
9. If (P3 is mid) and (P4 is highhigh) then (penalty is highhigh)  
 
 

 
 
 
Figure 8: Rule-based system for determining penalty in the Teal South history matching problem – (a) Case 1 and (b) Case 2 
 
 
The “best” strategy of DE algorithm with (population size (Np) = 25, scaling factor (F) = 0.5, crossover rate (Cr) = 0.9 and 
1000 simulations) has been used in history matching of the Teal South reservoir. In addition to Cases 1 and 2, a third history 
matching run was performed using the same tuning parameters, but without the additional penalty coming from the fuzzy 
inference system. The best misfit values (Equation 1) for “Case 1”, “Case 2” and “no penalty” are 15.93, 16.81 and 16.79 
respectively. Figure 9 compares the best match results of these cases with historical oil production rates. As we can see in this 
figure, all three cases provide satisfactory and almost identical matches to data. Figure 10 shows the boxplots for generational 
misfit values in these three cases. The boxplots provide a graphical way to analyze the performance of the DE algorithm in 
each generation and the overall convergence behavior. For each generation, we have plotted min, median and maximum 
values of the misfit boxplots in Figure 10. The figure demonstrates that the coupling of the fuzzy inference system does not 
have an adverse effect on the convergence rate of DE algorithm. In the boxplot min section, Case 1 has a lower generational 
min in comparison with Case 2 and the “no penalty” run. The generational medians are tied, while generational max values 
are higher for Case 2. The fact that Case 1 has a lower minimum misfit value in each generation for this history matching 
study may not be conclusive to prove that the fuzzy inference system improves convergence rate in all cases. However in 
complex real-life history matching studies where extensive knowledge of experts are represented through fuzzy rules, the 
system can help to improve the computational efficiency of the sampling engine by avoiding exploration in unrealistic 
regions. 
 
To further study the effect of the fuzzy rule-based system on the performance of DE, we also looked at the sampling history 
of the algorithm. The sampling history for each case is shown in Figure 11 (a,b,c), which plots the scaled value of the 8 
unknown parameters versus simulation number. This figure provides an insight into the performance of differential evolution 
in sampling the 8-dimensional space and the final regions where the algorithm has rested for each parameter.  
 

(a) (b) 
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Figure 9: Best history matching results in the Teal South example 
 

 
 
Figure 10: Comparison of minimum, median and maximum misfit boxplot values in each generation of DE algorithm for the 

Teal South problem 
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Figure 11: Sampling trail for Case 1 in (a) and for Case 2 in (b) 

 
 

Figure 11(c): Sampling trail for unknown parameters using DE algorithm with no penalty (Case 3) 
 
 

(a) (b) 

(c) 
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As shown in Figure 11, the fuzzy inference system has successfully guided the DE algorithm towards the regions of interest 
in the search space. In Case 1, we assumed that if P3 is low or very low then P4 is medium and that is precisely what we see 
in the sampling history (Figure 11 - a). The inference system has also steered the algorithm to a region where P3 and P4 are 
both medium in Case 2 (Figure 11 - b). The third case (no penalty was applied) has converged to a different region which 
violates the engineering assumptions for P3 and P4 (Figure 11 – c). The Teal South example shows that the fuzzy rule-based 
system can incorporate engineering knowledge and preference into history matching while preserving the computational 
efficiency of the sampling algorithm. 
 
 
SPE9: History Matching of Relative Permeability Curves 
The Ninth SPE Comparative Solution project [Killough, 1995] was designed to study the performance of different black-oil 
reservoir simulators. The reservoir (Figure 12) is represented by a 24×25×15 mesh with rectangular coordinates. The 
dimensions of the grid blocks are 300 feet in both the X- and Y- directions. Values of porosity and thickness can be found in 
the paper by Killough. The total thickness from layers 1 to 13 is 209 feet and layers 14 and 15 have thickness of 50 and 100 
feet respectively. Porosity values are reported in the original paper. PVT properties of the model come from the Second 
Comparative Solution Project [Weinstein et al. 1986]. 
 

 
 

Figure 12: Grid top view for the 9th SPE Comparative Solution reservoir model 
 
 
In the third example, we history match the relative permeability curves in the SPE9 model. A power-law model [Lee et al. 
1987] is used to obtain the curves. Table 6 shows the unknown parameters and their prior ranges. In the fuzzy inference 
system, we work with the Corey exponent for water and oil. It is assumed that if “nw” is in the higher end of the initial range, 
then “no” will also be in the same position. The truth values for “nw” and “no” are assumed to be 2.93 and 4.88 respectively. 
The rules for the fuzzy inference system (Figure 13 – a) are designed to reward the solutions with higher “nw” and “no”. 
 
1. If (nw is highhigh) and (no is highhigh) then (penalty is lowlow) 
2. If (nw is high) and (no is high) then (penalty is lowlow) 
3. If (nw is lowlow) and (no is lowlow) then (penalty is highhigh) 
4. If (nw is lowlow) and (no is highhigh) then (penalty is highhigh) 
5. If (nw is highhigh) and (no is lowlow) then (penalty is highhigh) 
6. If (nw is low) and (no is mid) then (penalty is highhigh) 
7. If (nw is lowlow) and (no is low) then (penalty is highhigh) 
8. If (nw is mid) and (no is lowlow) then (penalty is high) 
9. If (nw is lowlow) and (no is mid) then (penalty is highhigh) 
10. If (nw is high) and (no is lowlow) then (penalty is highhigh) 
11. If (nw is lowlow) and (no is high) then (penalty is highhigh) 
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The mean and variance of the Gaussian membership functions for input and penalty values in the fuzzy inference system are 
presented in Table 7. The nomenclature for the table is presented after conclusions. 
 
 

Table 6: Unknown parameters and prior ranges in the SPE9 example 
 

Parameter Range Parameter Range Parameter Range 
swcon 0.05 – 0.25  krwiro 0.2 – 0.7 sgcrit 0.02 – 0.06 
iswcrit 0.0001 – 0.2 nw 1 - 3 sgcon 0.0001 – 0.02 
soirw 0.05 – 0.25 no 2 - 5 krgcl 0.6 - 1 
isorw 0.0001 – 0.2 soirg 0.05 – 0.25 nog 1 - 3 
krocw 0.5 – 1 isorg 0.0001 – 0.2 ng 1 - 3 

 
 
 

Table 7: Mean and variance for Gaussian membership functions used for in the SPE9 example 
 

lowlow low mid high highhigh 
nw 1, 0.25 1.5, 0.25 2, 0.25 2.5, 0.25 3, 0.25 
no 2, 1 2.5, 1 2.75, 1 4, 1 5, 1 

Penalty -500000, 10000 200000, 50000 1000000, 200000 1500000, 200000 2500000, 200000 
 
 
Figure 13(b) shows the convergence of DE algorithm with “best” strategy and (Np = 25, F = 0.3, Cr = 0.5, 1000 simulations). 
Blue cross marks represent the original misfit values and red dots show the objective function values after adding the penalty. 
The penalized misfit values are used in the DE to evaluate solutions and select candidates for the next generation. For the 
SPE9 model, the “lowlow” penalty function has a mean value of -500000. If a solution has higher values for “nw” and “no”, 
adding this negative penalty function will actually reduce the original misfit value. Looking at Figure 13(b), we see that in the 
initial steps of history matching, solutions receive a positive penalty and red dots are mostly placed above blue marks. 
Progressing towards final solutions, the negative penalty acts as a rewarding mechanism and produces more models with 
higher “nw” and “no”. This is reflected in the convergence graph with more red dots being placed below blue marks. It 
should be noted that the penalty values must be in harmony with the objective function numbers. Thus it is necessary to have 
an estimate of the initial misfit values in order to define a proper range for the penalty function. We assumed a truth value of 
2.93 for “nw” and 4.88 for “no”. The values for “nw” and “no” in the best match for the SPE9 example are 2.79 and 4.82 
respectively. 
 
 

 
 
 

Figure 13: Rule-based fuzzy inference and convergence of DE algorithm for the SPE9 example 
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Figure 14 shows the ensemble of 1000 models for history matching relative permeability curves, best match and truth curve. 
Depending on the reservoir rock being water wet, oil wet or intermediate, the fuzzy inference system can be used to generate 
a more realistic relative permeability curve in real-life history matching problems. Figures 15-17 show the match result for 
cumulative oil, gas and water production in the SPE9 example after adjusting the relative permeability curves. These figures 
show a reasonable agreement between simulated and observed values. 

 
Figure 14: Ensemble of relative permeability curves in history matching and the best match vs. truth 

 
 

 
 

Figure 15: Best history matching for cumulative oil production 
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Figure 16: Best history matching for cumulative gas production 
 
 

 
 

Figure 17: Best history matching for cumulative water production 
 
 
Discussion 
The rule-based system introduced in this paper to incorporate engineering knowledge in population-based algorithms can also 
be used to guide other techniques for assisted history matching and optimization. Gradient-based algorithms with penalty 
functions to satisfy constraints have been sitting on the shelves for the past four decades [Luenberger, 1971] [Luenberger, 
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1974]. The ordinary penalty function can easily be replaced with the rule-based penalty introduced in this work and be 
applied to history matching problems. The fuzzy inference system can also be integrated with different flavors of Ensemble 
Kalman Filter (EnKF). This can be achieved either in the update stage or in hybrid versions of EnKF with evolutionary 
algorithms [Schulze-Riegert et al. 2009] and MCMC [Emerick and Reynolds, 2012]. One interesting direction to follow is 
combining the fuzzy rule-based system with the sub-space EnKF [Sarma and Chen, 2012]. Sub-space EnKF uses different 
parameterization for each ensemble member. The proposed approach can be used to favor ensembles that honor the desired 
geological/geostatistical pattern and reject the ones that deviate from engineering constraints. 
 
Integration of geological information into history matching and field optimization is another area that can benefit from the 
introduced framework. In history matching using black-box sampling algorithms, it is important to test different geological 
interpretation scenarios and study the impact of incorporating a hierarchy of heterogeneities into geological models. For 
example, distributions of thin, low permeability units with extensive aerial continuity can significantly affect the fluid flow 
[Lun et al. 2012]. Furthermore, geologists may have prior information on complex geological structures when parameterizing 
a model for history matching. For example, this information can be in the form of relationships between thickness, width, 
wavelength and amplitude values used to generate sinuous channels in reservoir models [Rojas et al. 2011]. The experience 
of geologists can be used to create a rule-based fuzzy inference engine to control the geological structures and eliminate 
unrealistic models in history matching. The same idea can be used in geostatistical parameterization for history matching. For 
example a relationship may be defined between different parameters of variogram for each layer. The fuzzy inference system 
will then penalize the realizations that do not follow the desired patterns and hence reduce the chance for these models from 
being carried to next iterations. On the other hand, it would be very interesting to understand the effect of fuzzy inference on 
the uncertainty of predictions after the history matching step. 
 
Fuzzy set theory can also be used to define fuzzy objective functions in history matching. Rommelfanger [2007] provides a 
critical survey of different methods in optimization of fuzzy objective functions. The application of fuzzy functions for 
multiobjective optimization of electromagnetic devices has been demonstrated by Chiampi [et al. 1998]. It is also possible to 
define distance metrics to measure performance of population-based algorithms and combine information from these metrics 
with a rule-based inference system to guide the sampling engine [Hajizadeh et al. 2012]. 
 
In this work, fuzzy membership functions are used to deal with uncertain parameters. These membership functions can be 
defined in various shapes such as triangular, trapezoidal, Gaussian, etc.; but they all come with fixed end-points (crisp). If 
there is some uncertainty about the end points of membership functions, Type-2 fuzzy systems can be used [Mendel, 2007]. 
Unlike crisp fuzzy membership functions in Type-1 systems, Type-2 fuzzy systems have fuzzy membership functions which 
can be useful in cases where it is difficult to determine exact membership functions for input/output parameters. Some of 
these ideas will be pursued in upcoming work. 
 
Conclusions 
We introduced a novel mechanism to incorporate engineering knowledge in assisted history matching through combining a 
fuzzy-inference system with the sampling engine. Three examples demonstrate the application areas and show that the rule-
based system preserves computational efficiency of the original sampling algorithm. We have shown that using this novel 
approach, we are able to guide the sampling algorithm to regions of interest. The law-abiding system makes it easy to define 
and handle complex constraints both in parameter and objective function space. The system also elegantly deals with 
interactions among variables. Finally, the introduced workflow opens a door for integration of reservoir engineering and 
geological knowledge in gradient and ensemble-based methods used in history matching and production optimization. 
 
 
Nomenclature 
swcon: Connate water saturation  
soirw: Irreducible oil saturation 
krocw: Relative permeability value of oil at the connate water saturation 
krwiro: Relative permeability value of water at the irreducible oil saturation 
nw: Corey exponent for water in water and oil relative permeability system 
no: Corey exponent for oil in water and oil relative permeability system 
soirg: Irreducible oil saturation in the two phase gas liquid system 
sgcrit: Critical gas saturation 
sgcon: Connate gas saturation 
krgcl: Relative permeability value of gas at the connate liquid saturation 
nog: Corey exponent for oil in liquid and gas relative permeability system 
ng: Corey exponent for gas in liquid and gas relative permeability system 
 
 



SPE 163636  17 

References 
Abdollahzadeh, A., Reynolds, A., Christie, M., Corne, D., Williams, G., Davies, B.J. [2011] Estimation of Distribution 
Algorithms Applied to History Matching, SPE 141161, Reservoir Simulation Symposium, The Woodlands, Texas, USA, 21-
23 February 
 
Biesbroek, R. [2006] A Comparison of the Differential Evolution Method with Genetic Algorithms for Orbit Optimization, in 
57th International Astronautical Congress, Valencia, Spain 
 
Blockley, D., Godfrey, P. [2000] Doing it Differently: Systems of Rethinking Construction, Thomas Telford, London 
 
Chakraborty, U.K. [2008] Advances in Differential Evolution, Studies in Computational Intelligence Book Series, 143, 
Springer 
 
Chappell, N.A., Lancaster, J.W. [2007] Comparison of Methodological Uncertainties within Permeability Measurement, 
Hydrological Process, 21, 2504-2514 
 
Chiampi, M., Fuerntratt, G., Magele, C., Ragusa, C., Repetto, M. [1998] Multiobjective Optimization with Stochastic 
Algorithms and Fuzzy Definition of Objective Function, International Journal of Applied Electromagnetic and Mechanics, 
IOS Press, Vol. 9, No. 4, 381-389 
 
Christie, M., Macbeth, C., Subbey, S. [2002] Multiple History Matched Models for Teal South, The Leading Edge, March, 
286-289 
 
Cruz, L. Willigenburgh, V. Van Straten, G. [2003] Efficient Differential Evolution Algorithms for Multimodal Optimal 
Control Problems, Applied Soft Computing, Vol. 3, No. 2, 97-122. 
 
Emerick, A.A., Reynolds, A.C. [2012] Combining the Ensemble Kalman Filter with Markov Chain Monte Carlo for 
Improved History Matching and Uncertainty Characterization, SPE 141336, SPE Journal, June 
 
Hajizadeh, Y. [2010] Ants Can Do History Matching, SPE 141137-STU, SPE International Student Paper Contest, ATCE 
2010, Florence, Italy, 19-22 September 
 
Hajizadeh, Y., Christie, M., Demyanov, V. [2010] History Matching with Differential Evolution Approach: A Look at New 
Search Strategies, SPE 130253, EUROPEC/EAGE Annual Conference and Exhibition, Barcelona, Spain, 14-17 June 
 
Hajizadeh, Y. [2011] Population-Based Algorithms for Improved History Matching and Uncertainty Quantification of 
Petroleum Reservoirs, PhD Thesis, Institute of Petroleum Engineering, Heriot Watt University, Edinburgh, UK 
 
Hajizadeh, Y., Christie, M., Demyanov, V. [2011] Towards Multiobjective History Matching: Faster Convergence and 
Uncertainty Quantification, SPE 141111, SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, 21-23 
February 
 
Hajizadeh, Y., Portes, E., Costa Sousa, M. [2012] Building Trust in History Matching: The Role of Multidimensional 
Projection, SPE 152754, EUROPEC/EAGE Annual Conference, Copenhagen, Denmark, 4-7 June 
 
Iqbal, A., Dar, N. [2009] A Self Progressing Fuzzy Rule-Based System for Optimizing and Predicting Machining Process, In 
Ao and Gelman (Eds.) Advances in Electrical Engineering and Computational Science, Springer Lecture Notes in Electrical 
Engineering, Vol. 39, 439-446 
 
Jacquard, P., Jain, C. [1965] Permeability Distribution from Field Pressure Data, SPE 1307, SPE Journal, Vol. 5, No. 4, 281-
294 
 
Kathrada, M. [2009] Uncertainty Evaluation of Reservoir Simulation Models Using Particle Swarm and Hierarchical 
Clustering, PhD Thesis, Institute of Petroleum Engineering, Heriot Watt University, Edinburgh, UK 
 
Killough, J.E. [1995] Ninth SPE Comparative Solution Project: A Reexamination of Black-Oil Simulation, SPE 29110, 13th 
SPE Symposium on Reservoir Simulation, San Antonio, Texas, USA, 12-15 February 
 
Kruger, W.D. [1960] Determining Areal Permeability Distribution by Calculations, SPE 1580, 35th Annual Fall Meeting, 
Denver, USA, 2-5 October  



18  SPE 163636 

 
Lee, T.Y., Seinfeld, J.H. [1987] Estimation of Absolute and Relative Permeabilities in Petroleum Reservoirs, Inverse 
Problems, Vol. 3, No. 4, 711-728 
 
Luenberger, D.G. [1971] Convergence Rate of a Penalty-function Scheme, Journal of Optimization Theory and Applications, 
Vol. 7, No. 1, 39-51 
 
Luenberger, D.G. [1974] A Combined Penalty Function and Gradient Projection Method for Nonlinear Programming, 
Journal of Optimization Theory and Applications, Vol. 14, No. 5, 477-495 
 
Lun, L., Dunn, P., Stern, D., Oyerinde, A., Chorneyko, D., Stewart, J., Fowler, K., Nollet, S. [2012] A Procedure for 
Integrating Geologic Concepts into History Matching, SPE 159985, SPE Annual Technical Conference and Exhibition, San 
Antonio, Texas, USA, 8-10 October 
 
McPhee, C., Arthur, K. [1994] Relative Permeability Measurements – An Inter-Laboratory Comparison, SPE 28826, 
European Petroleum Conference, London, UK, October 25-27 
 
Mendel, J. [2007] Type-2 Fuzzy Sets and Systems: An Overview, IEEE Computational Intelligence Magazine, Vol. 2, No.1, 
20-29 
 
Mohamed, L., Christie, M., Demyanov, V. [2009] Comparison of Stochastic Sampling Algorithms for Uncertainty 
Quantification, SPE 119139, Reservoir Simulation Symposium, The Woodlands, Texas, USA, 2-4 February 
 
Moller, B., Graf, W., Beer, M., Sickert, J. [2002] Fuzzy Randomness – Towards a New Modeling of Uncertainty, Fifth 
World Congress on Computational Mechanics, Vienna, Austria, July 7-12 
 
Nikravesh, M., Aminzadeh, F., Zadeh, L. [2003] Soft Computing and Intelligent Data Analysis in Oil Exploration, in Series 
of Developments in Petroleum Science, Elsevier 
 
Nissen, V., Propach, J. [1998] On the Robustness of Population-Based Versus Point-Based Optimization in the Presence of 
Noise, IEEE Transactions on Evolutionary Computation, Vol. 2, No. 3, 107-119 
 
Ouenes, A., Meunier, G., Moegen, H. [1992] Application of Simulated Annealing Method (SAM) to Gas Storage Reservoir 
Characterization, 96th Annual AIChE National Spring Meeting, New Orleans, March 29-April 3 
 
Petrovska, I., Carter, J.N. [2006] Estimation of distribution algorithms for history-matching, European Conference on the 
Mathematics of Oil Recovery (ECMOR), Amsterdam, Netherland, 4-7 September 
 
Price, K.V., Storn, R., Lampinen, J. [2005] Differential Evolution: A Practical Approach to Global Optimization, Springer 
 
Rahman, M.M., Rahman, M.K., Rahman, S.S. [2001] An Integrated Model for Multiobjective Design Optimization of 
Hydraulic Fracturing, Journal of Petroleum Science and Engineering, 31, 41-62 
 
Rahmati, H., Nouri, A., Pishvaie, MR., Bozorgmehri, R. [2011] A Modified Differential Evolution Optimization Algorithm 
with Random Localization for Generation of Best-Guess Properties in History Matching, Energy Resources Part A – 
Recovery Utilization and Environmental Effects, Vol. 33, No. 9, Pages 845-858 
 
Ray, T., Sarker, R. [2006] Multiobjective Evolutionary Approach to the Solution of Gas Lift Optimization Problems, IEEE 
Congress on Evolutionary Computation, Vancouver, Canada, July 16-21 
 
Rojas, T., Demyanov, V., Christie, M., Arnold, D. [2011] Use of Geological Prior Information in Reservoir Facies 
Modelling, IAMG Conference, Salzburg, Austria, 5-9 September 
 
Rommelfanger, H. [2007] Optimization of Fuzzy Objective Functions in Fuzzy (Multicriteria) Linear Programs – A Critical 
Survey, In Castillo et al. (Eds.) Theoretical Advances and Applications of Fuzzy Logic and Soft Computing, Advances in 
Soft Computing, Vol. 42, 324-33 
 
Sarma, P., Chen, W.H. [2012] Preventing Ensemble Collapse and Preserving Geostatistical Variability Across the Ensemble 
with the Subspace EnKF, 13th European Conference on the Mathematics of Oil Recovery (ECMOR), Biarritz, France, 10-13 
September 



SPE 163636  19 

 
Schulze-Riegert, R., Axmann, J., Haase, O., Rian, D., You, Y. [2001] Optimization Methods for History Matching of 
Complex Reservoirs, SPE 66393, Reservoir Simulation Symposium, Houston, Texas, USA, 11-14 February 
 
Schulze-Riegert, R., Krosche, M., Pajonk, O. [2009] Hybrid Optimization Coupling EnKF and Evolutionary Algorithms for 
History Matching: A Case Example, SPE 121965, EUROPEC/EAGE Annual Conference and Exhibition, Amsterdam, The 
Netherlands, 8-11 June 
 
Sen, M., Datta-Gupta, A., Stoffa, P., Lake, L., Pope, G. [1995] Stochastic Reservoir Modeling Using Simulated Annealing 
and Genetic Algorithms, SPE 24754, SPE Formation Evaluation, Vol. 10, No. 1, 49-55 
 
Sousa, S., Maschio, C., Schiozer, D. [2006] Scatter Search Metaheuristic Applied to the History-Matching Problem, SPE 
102975, Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 24-27 September 
 
Storn, R., Price, K. [1995] Differential Evolution – A Simple and Efficient Adaptive Scheme for Global Optimization over 
Continuous Spaces, Technical Report for International Computer Science Institute, Berkeley, TR-95-012 
 
Weinstein, H.G., Chappelear, J.E., Nolen, J.S. [1986] Second Comparative Solution Project: A Three-Phase Coning Study, 
SPE 10489, Journal of Petroleum Technology, Vol. 38, No. 3, 345-353 
 
Wong, P., Aminzadeh, F., Nikravesh, M. [2002] Soft Computing for Reservoir Characterization and Modeling, Physica-
Verlag, Springer 
 
Zadeh, L. [1965] Fuzzy Sets, Information and Control, Vol. 8, 338-353 
 
Zadeh, L. [1978] Fuzzy Sets as a Basis for a Theory of Possibility, Fuzzy Sets and Systems, 1, 3.28 
 
Zhao, J., Bose, B.K. [2002] Evaluation of Membership Functions for Fuzzy Logic Controlled Induction Motor Drive, 28th 
Conference of the Industrial Electronics Society (IECON 02), IEEE, Sevilla, Spain, 5-8 November 
 
Zitzler, E., Deb, K., Thiele, L. [2000] Comparison of Multiobjective Evolutionary Algorithms: Empirical Results, 
Evolutionary Computation Journal, volume 8, number 2, 173-195 
 
 
 


	SPE 163636
	A Soft and Law-Abiding Framework for History Matching and Optimization under Uncertainty
	Yasin Hajizadeh, Computer Modelling Group (CMG) Ltd./University of Calgary; Long Nghiem, Computer Modelling Group Ltd. (CMG); Arash Mirzabozorg, Computer Modelling Group Ltd. (CMG)/University of Calgary; Chaodong Yang, Heng Li, Computer Modelling Grou...
	Abstract

