
Technical Section

Facing the high-dimensions: Inverse projection with radial
basis functions$

Elisa Amorim a,n, Emilio Vital Brazil a, Jesús Mena-Chalco b, Luiz Velho c,
Luis Gustavo Nonato d, Faramarz Samavati a, Mario Costa Sousa a

a Department of Computer Science, University of Calgary, Canada
b Center for Mathematics, Computation and Cognition, Federal University of ABC, Brazil
c National Institute for Pure and Applied Mathematics, Brazil
d University of São Paulo, Brazil

a r t i c l e i n f o

Article history:
Received 3 September 2014
Received in revised form
11 February 2015
Accepted 26 February 2015
Available online 17 March 2015

Keywords:
Multidimensional data
Multidimensional projection
Inverse projection
Exploration of multidimensional
parameters
Face synthesis

a b s t r a c t

Multidimensional projection has become a standard tool for visual analysis of multidimensional data sets, as
the 2D representation of multidimensional instances gives an important and informative panorama of the
data. Recently, research in this torojection, a recently proposed resampling mechanism that allows users to
generate new multidimensional instances by creating reference 2D points in the projection space. Given an
m-dimensional data set and its 2D projection, inverse projection transforms a user-defined 2D point into an
m-dimensional point by means of a mapping function. In this work, we propose a novel inverse projection
technique based on Radial Basis Functions interpolation. Our technique provides a smooth and global
mapping from low to high dimensions, in contrast with the former technique (iLAMP) which is local and
piecewise continuous. In order to demonstrate the potential of our technique, we use a 3D human-faces data
set and a procedure to interactively reconstruct and generate new 3D faces. The results demonstrate the
simplicity, robustness and efficiency of our approach to create new face models from a structured data set, a
task that would typically require the manipulation of hundreds of parameters.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Dimensionality reduction for visualization, called multidimen-
sional projection, is a traditional approach for data analysis.
Principal component analysis and multidimensional scaling, for
instance, are mathematical tools that have long been used to find
low-dimensional representations (e.g., 2D) of multidimensional
data sets. The goal of such representation is to provide an over-
view of similarities between instances of data in a 2D space or
projection space. More recently, multidimensional projection tech-
niques have evolved and improved in terms of computational
speed [1,2] and user interactivity for data exploration [1,3].

For some applications, however, the visual exploration of
multidimensional data may not be the only task at hand and
creating new instances of data and extrapolating existing ones
may prove to be useful. Taking this into consideration, Amorim
et al. [4] have proposed to use the projection space as an interface
for the creation and extrapolation of multidimensional data, a
procedure called inverse projection or back-projection.

Given a multidimensional data set X �Rm and its 2D projection
Y �R2, inverse projection allows the user to create new multi-
dimensional points (qARm) by creating reference points pAR2 in
the projection space. The technique presented in the paper of
Amorim et al. [4] is the only inverse projection method proposed
so far that is used in conjunction with multidimensional projection
as an interface. Its mathematical formulation is based on the Local
Affine Multidimensional projection (LAMP) technique [3] and is,
therefore, named iLAMP (inverse-LAMP). iLAMP operates locally, it
does not provide a continuous mapping (e.g., a continuous 2D curve
may be mapped in more than one region in the multidimensional
space) and uses local affine transformations to map user-defined 2D
points into the multidimensional space. It will be demonstrated
further that iLAMP can cause distortions in the multidimensional
points when the projection layout is modified by the user. In this
work, we propose a novel nonlinear and continuous inverse projection
technique, based on radial basis function (RBF) interpolation. When
we mention continuity in this work, we refer to the standard
mathematical definition of continuity for metric spaces.

RBF is a well-established mathematical formulation that has
been used in various multivariate approximation problems [5]. The
goal of RBF is to construct a function s that interpolates given
function values at their corresponding given data points in the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

http://dx.doi.org/10.1016/j.cag.2015.02.009
0097-8493/& 2015 Elsevier Ltd. All rights reserved.

☆This article was recommended for publication by Stefan Bruckner.
n Correspondence to: Department of Computer Science, 602 Information and

Communications Technology (ICT), University of Calgary, 2500 University Dr. NW
Calgary, Alberta, Canada T2N 1N4. Tel.: þ1 (403) 220-6015.

Computers & Graphics 48 (2015) 35–47

www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2015.02.009
http://dx.doi.org/10.1016/j.cag.2015.02.009
http://dx.doi.org/10.1016/j.cag.2015.02.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.02.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.02.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.02.009&domain=pdf
http://dx.doi.org/10.1016/j.cag.2015.02.009


space. The interpolation function s is formed by a linear combina-
tion of radial basis kernels. Depending on the choice of the kernel
function, s can be smooth (in this work we say a function or
hypersurface is smooth if its second derivative is continuous).

The problem of inverse projection consists of finding a map-
ping function s : R2-Rm and, in this work, we employ RBF
interpolation to create this function. In this specific scenario, the
RBFs centers are given by the 2-dimensional position of the points
in the projection space (yiAY), and the outputs are given by the
corresponding multidimensional points of the original data set
(xiAX). The mapping function s is, thus, one that exactly maps the
given 2D points yi into their multidimensional counterparts xi.
This function is used to approximate the multidimensional correspon-
dent of a user-generated 2D point. The fact that this function is smooth
makes the RBF solution more attractive than iLAMP for some applica-
tions. The problem of creating 3D human faces from an existing data
set of face models is an example of such applications.

Analysis and synthesis of human faces are important in
computer graphics and vision. In general, face models are encoded
as multidimensional feature vectors that store information about
geometric position and texture values of landmark-points on the face.
The position of the landmark points characterizes particular expres-
sions and personal features. Synthesis of human faces is usually done
“by example”, where an input model of a face is given and a 3D model
is generated based on an existing training set of face models [6].

In this work, we apply the inverse projection as a visual interface to
synthesize new face models. The adopted framework is as follows:
multidimensional projection is performed on a given data set with
face models represented by their respective feature vectors. The user
can then create 2D points on the projection space and have these
points mapped back into the original space of feature vectors.
In the final stage of the framework the new multidimensional feature
vectors are translated into 3D face models (see Fig. 5 for an example).
The smoothness provided by the proposed RBF technique poses
an advantage for this application, as a continuous curve in the 2D
projection space creates a fluid transition of face models.

The inverse projection framework is a very recent topic itself,
and this is the first time that a nonlinear smooth mapping from
low to high dimension is proposed. Furthermore, we introduce a
visual interface with multidimensional projection and inverse
mapping is used for the application of face synthesis.

To summarize, the contributions of this work are

� A novel inverse projection technique based on RBF interpolation
that is smooth. The smoothness provided by RBF is an interesting
characteristic for some applications, like the face-synthesis applica-
tion presented in this work. Furthermore, the proposed formulation
prevents distortions that may be present with the iLAMP method.

� An application on human face models using the proposed
inverse projection: given a data set of face models, inverse
projection is employed to synthesize new faces.

� A workflow that enables the user to explore the multidimen-
sional space of faces and to create new characters.

� An expression transfer mechanism that can be used to create
the various expressions of a new character. Our interface
also permits the new characters with different expressions to
be incorporated into the multidimensional data set. This allows
the construction of a complete character and the further
exploration of its expression variations.

2. Related work

Visualization has long been used as a powerful tool to gain
insight into multidimensional data sets. Many different visualiza-
tion techniques have been created to better understand such a

complex data configuration. Parallel-coordinates [7] and scatter-
plot matrices [8], for instance, are popular techniques used to
represent multidimensional data in a 2D display. They provide
insight about the correlation of parameters on the data set and can
also be used to identify possible outliers and clusters. However,
such techniques do not provide a mechanism to visualize the
neighborhood structure of data under analysis, making harder the
process of identifying similar instances.

Multidimensional projection (MP), in turn, represents each
instance of a data set as a 2D point in a visual space. The position
of each instance is calculated in such a way that distances are
preserved as much as possible, i.e., similar instances in the multi-
dimensional space should be positioned close together in the 2D
projection space. Thus, this methodology provides insight into the
neighborhoods of the data set and is also useful to identify clusters
and patterns in the data. Principal component analysis [9] and
some multidimensional scaling [10] are traditional linear MP
techniques. Linear techniques often present limitations that pre-
vent distances to be well preserved when the data set is not
distributed in a 2D manifold structure. On the other hand, non-
linear techniques, like Sammon's mapping [11], prove to be useful
in projecting data sets with nonlinear relationships. Techniques
such as LLE proposed by Roweis et al. [12] use a locally linear
approach but the overall projection result is able to capture
nonlinearities in the data set. Isomap [13] is another classic
method that is able to perform well in nonlinear data sets as it
uses the geodesic distance information in the data set to compute
dissimilarities. Recent MP techniques emphasize the importance
of fast computation [1,2] and user-interactivity through the use of
control points to steer the projection [1,3,14]. Control points have
also been recently proposed, for instance, as a means to transform
a multidimensional feature space based on user input provided on
the projection layout [15].

In order to leverage the neighborhood information provided by
MP techniques, Amorim et al. [4] proposed a technique called
iLAMP that allows users to create multidimensional points from
2D projections. This process is called inverse projection and can be
used to extrapolate data by creating points in the 2D projection
space. iLAMP was proposed to be employed to assist users in
finding new seed points for optimization problems. More specifi-
cally, they consider the common problem in engineering of
encountering a combination of parameters that results in a desired
output. This is often modeled as a minimization problem where
the goal is to minimize a function that measures the error between
the desired output and the calculated output. In such cases, the
goal is not always to find a global minimum to this function but to
ensure that a proper exploration of the parameter space is
accomplished. In this context, iLAMP enables us to interactively
explore the multidimensional parameter-space from a 2D per-
spective. Given the 2D projection of a few local minima to the
minimization function, iLAMP allows users to interactively create
and inspect new seed points in the multidimensional space
by sampling in regions of interest in the projection space.
The new seed points are then used as starting points for an
iterative optimization algorithm and potentially new local minima
are found.

Some systems, like the ones presented by Bruckner and Möller
[16] and Pretorius et al. [17] have also been designed to assist the
user to explore multidimensional parameter spaces. In the paper
of Bruckner et al. [16], it was introduced a system that allows the
user to explore simulation results for special effects. The focus of
their system was not to provide a complete understanding of the
parameter space, but to allow users to achieve a desired animation
sequence without the hurdle of parameter tuning. Therefore, the
system is not designed to support resampling of the parameter
space. Likewise, in the paper of Pretorius et al. [17] the authors

E. Amorim et al. / Computers & Graphics 48 (2015) 35–4736



proposed an interactive visualization technique that enables users
to analyze the relationship between sampled input parameters
and corresponding outputs. Their system is designed to assist
users in the task of parameter tuning for image analysis. The first
step in their pipeline is to uniformly sample the parameter space.
The outputs for each parameter combination are calculated and
displayed in such a way that users can understand the input–
output relationship. Their system also does not permit resampling
the parameter space during the process. In fact, just a few
techniques/systems allows for resampling as part of the data
exploration process.

Wang et al. [18] propose a system that allows the user to create
and edit multidimensional data points from an existing data set or
from scratch. They use traditional visualization tools, as parallel-
coordinates and scatterplot matrices, to create an interface that
permits user to sketch the distribution of new points. In another
work, Torsney-Weir et al. [19] present a system that assists the
user in resampling a continuous parameter space. Their system is
designed to help users to find a good parameter combination for
segmentation methods. They start by automatically sampling the
parameter space and then they evaluate each parameter combina-
tion based on multiple-objective optimization functions. Scatter-
plot matrices and Hyperslice [20] are used to display the samples
and the corresponding function values. Their interface guides
users in the search for regions of interest of the parameter space
while permitting to resample user-defined areas. The resampling
mechanism, however, requires the user to set each parameter
manually and the system is not designed to deal with high number
of parameters.

In inverse projection, the user is not necessarily aware of the
number of parameters in hand, as both analysis and data extra-
polation are carried out in the 2D projection space. This concept is
very much alike what Endert et al. [21,22] describe as “Observa-
tion-level spatialization”, that enables users to interact directly
with projected data points, instead of manipulating parameters
separately. In their work, however, the focus is to provide more
insight into a given data set by permitting the user to rearrange
the projected points based on a priori knowledge of the data.
In our proposed work, even though the user can rearrange the
projection results (as will be presented in Section 4.3), the focus is
to use the projection of the data to identify regions of interest and
generate new samples in these regions.

In the next section we present an overview of the interactive
inverse projection framework together with a discussion on data
set requirements for its application.

3. Interactive inverse projection framework

The proposed inverse projection is an interactive methodology
that allows users to create new multidimensional instances in a
straightforward manner. It all starts with a multidimensional data
set, that is projected into a 2D projection space. Besides being the
interface where data analysis takes place, the projection space also
provides the interactive medium over which the user can create
new multidimensional samples. With the use of a mouse or
pointing device, the user creates 2D points in regions of interest
over the projection space. For each user-defined point, inverse
projection finds a multidimensional representation for it by means
of a mapping function.

One may generalize the main components of the interactive
inverse projection framework as (a) a multidimensional data set
used as the base for parameter exploration; (b) a projection
mapping that projects multidimensional samples into a projection
space; (c) an interactive projection space that allows the user to
rearrange the projected data and to create points in it; and (d) an

inverse mapping that maps 2D user-create points into the multi-
dimensional space. This framework is illustrated in Fig. 1.

In order to use the proposed framework, there are two basic
premises that need to hold true for the given data set: (1) the
objects of the data set can be represented as a numerical feature
vector of n-dimensions; and (2) there is a mechanism that trans-
forms any given feature vector of n-dimensions into an object of
the same type as the data set.

For the first premise, the numerical representation of the data
set is the information used to find the corresponding 2D projec-
tion. It is true that some multidimensional projection techniques
like MDS only require the dissimilarity information between pairs
of instances. However, when the inverse projection takes place it is
the direct relationship between 2D points and multidimensional
points that permit the creation of a mapping function. The way to
find a good feature-vector representation for a data set is very
case-dependent. In some cases the object itself is the feature-
vector. For example, in the optimization application presented in
iLAMP, the instances of data are multidimensional points in the
parameter space. These points are directly used as the feature-
vector representation required for the inverse-projection frame-
work. In other cases this relationship is not as explicit. For
instance, the data set of 3D humans faces used in this work
requires an appropriate definition of how to extract feature vectors
that represent each face. The definition of feature-vectors in this
specific scenario is described in Section 5.1. Once each instance in
the data set is represented by feature-vectors of same dimension
and semantic, one is ready to start using the inverse-projection
framework.

Regarding the second premise, the output of inverse-projection
is a multidimensional point with same dimension as the feature-
vectors describing each instance of the data. In order to allow the
user to fully comprehend a newly created point and to move
forward with the exploration, it is essential that a mechanism that
will transform this point into an object of the same class as the
ones in the data set exists. Such a mechanism transforms, for
example, a multidimensional feature-vector into a 3D face model
in our face-synthesis application as described in Section 5.3.

A fundamental point in the interactive inverse projection
framework is to allow the user to redefine the projection layout
in order to achieve a desirable result. For example, when the user
has a previous knowledge of the data set, or when each instance of
data has a direct visual representation, it can make sense for the
user to rearrange the projection layout in order to isolate or
augment the influence of some instances in the confection of a
new point. In this work, this is possible through the manipulation

Fig. 1. Given (a) a multidimensional data set (illustrated by the colored circles
inside the cube), (b) multidimensional projection maps the data into a
(c) projection space. Inverse projection operates in the other direction: via mouse,
the user defines a 2D point in the projection space (illustrated by the cross), which
is (d) mapped back into the multidimensional space (cross inside cube). (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

E. Amorim et al. / Computers & Graphics 48 (2015) 35–47 37



of special projected instances, called control points (as will be
detailed in Section 4.3). The repositioning of control points by the
user causes a modification in the entire projection layout and can
be used to redefine regions of interest. When this repositioning
occurs, ideally one would still have a coherent mapping from low
to high-dimensions. This coherence will be directly impacted by
the chosen mapping function.

In fact, the mapping function used to map 2D points into
multidimensional samples is an essential part of the inverse
projection framework. The mapping function defines important
properties that will make each inverse projection method unique.
For instance, when the mapping function is smooth, the new
samples will lay on a manifold embedded in the multidimensional
space. This kind of smooth mapping is important when control
points manipulation is carried out because it guarantees that small
changes in the control points will result in small changes in the
output. Examples of data sets that we believe can be benefited by
the possibility of control points manipulation and, consequently,
by the smoothness of the mapping function are face models,
textures, 3D model animations, or any other data set that contains
a direct visual representation of each instance. Thus, smoothness is
precisely what we propose in this paper and we achieve it through
RBF interpolation, as explained by Monnig et al. [23]. In the next
section we present the proposed inverse projection using RBF.

4. Inverse projection through radial basis functions

RBF has become popular to approximate multivariate functions,
primarily for its ability to deal with multidimensional data [5]. In
RBF interpolation, given data samples χ iARm and respective
function values f i ¼ f ðχ iÞAR; i¼ 1…N, an approximant s : Rm-R

is constructed, in such a way that s interpolates the function f over
the data samples. The approximant s(x) is formed by a finite
linear combination of translations of radially symmetric functions
ϕðJ � J Þ, where J � J is the Euclidean norm in Rm. As explained in
the book of Buhmann [5], radial symmetry means that the value of
the function only depends on the Euclidean distance of the
argument from the origin. Since the translations of ϕ are defined
by χi, the interpolation function s is defined by

sðxÞ ¼
XN

i ¼ 1

λiϕðJχ i�xJ Þ; ð1Þ

where λi are real-valued coefficients.
RBF has been successfully applied in a recent multidimensional

projection technique, named RBF projection [14]. In RBF projec-
tion, a function s : Rm-R2 is created to map m-dimensional points
to the 2D projection space. In this work, we propose to use RBF
interpolation to perform inverse projection, by creating a function
s that will map information from the projected space into the
original m-dimensional space, i.e., s : R2-Rm. A detailed descrip-
tion of the technique is presented below.

4.1. Mathematical formulation

Let X �Rm be an m-dimensional data set, and Y �R2 its
projected counterpart, i.e., yi is the 2D representation of
xi; i¼ 1;…;N. Given any point pAR2, we want to find an m-dimen-
sional representation for it, i.e., a point qARm. Thus, a mapping
s : R2-Rm is sought. To make the formulation clear, we write
sðpÞ ¼ ðs1ðpÞ;…; smðpÞÞ, where sk accounts for the k th output
dimension and is written in the form of Eq. (1):

skðpÞ ¼
XN

i ¼ 1

λkiϕðJyi�pJ Þ; ð2Þ

where ϕ : Rþ-R is a given continuous radial basis kernel
function, yiAR2 are projected points (RBF centers) and the λki's
are the unknown real-valued coefficients. Note that we seek a
mapping s that interpolates the points for the given data samples,
i.e., sðyjÞ ¼ xj. Thus, skðyjÞ ¼ xjk where xjk is the k th element of
vector xj. The interpolation condition for each function sk can be
written as

skðyjÞ ¼
XN

i ¼ 1

λkiϕðJyi�yj J Þ ¼ xjk: ð3Þ

Therefore, the problem of finding the scalar coefficients λk for
each function sk comes down to the solution of a linear system

Φλk ¼ bk; ð4Þ
where Φ is the interpolation matrix with ϕij ¼ϕji ¼ϕðJyi�yj J Þ,
λk ¼ λk1…λkN

� �T and bk ¼ xk1…xkN½ �T . The linear system can be
written in matrix form as

ϕ11 … ϕ1N

ϕ21 … ϕ2N

⋮ ⋮ ⋮
ϕn1 … ϕNN

2
66664

3
77775

λk1
λk2
⋮
λkN

2
66664

3
77775
¼

xk1
xk2
⋮
xkN

2
66664

3
77775
: ð5Þ

Note that the linear system in Eq. (4) is solved m times to find
the parameter λ's for each function sk. However, the interpolation
matrix Φ remains the same and only the right-hand side vector bk
changes for different sk's. Thus, the linear system can be actually
solved only once in the process by factorizing Φ.

Once the scalars λki; k¼ 1;…;m and i¼ 1;…;N are calculated,
the mapping s¼ ðs1;…; smÞ is complete and can be used to
approximate the position qARm to any given point pAR2. Fig. 2
illustrates the process of using RBFs to create a mapping function
from low to high dimension. Algorithm 1, in turn, presents a step-
by-step procedure to calculate the mapping function s.

Numerical and computational aspects: As it was shown, the RBF
interpolation problem comes down to the solution of the linear
system given by Eq. (5). Note that the invertibility of the inter-
polation matrix Φ is dictated by the kernel function ϕðrÞ, where r
is the Euclidean distance of the argument to the center of the
kernel function. Some functions are proven to provide an inver-
tible matrix with the minor assumption that centers yi are unique.

Fig. 2. Inverse mapping using RBF. fx1; x2 ; x3 ; x4gARm represent multidimensional
points, while fy1 ; y2; y3 ; y4gAR2 are their projected counterparts. Our inverse
projection method creates a continuous nonlinear mapping function s (illustrated
by pink surface) that interpolates between data samples, i.e. sðyiÞ ¼ xi . The black
points represent samples of the data set, while the blue point represents a sample
created through inverse mapping (p is the user-generated point; q represents the
multidimensional point approximated through the RBF mapping). (For interpreta-
tion of the references to color in this figure caption, the reader is referred to the
web version of this paper.)

E. Amorim et al. / Computers & Graphics 48 (2015) 35–4738



The Gaussian (ϕðrÞ ¼ e�ϵr2 ) and Multiquadrics (ϕðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2þϵr2

p
)

functions are popular choices in various applications (where ϵ and
c are positive parameters). A detailed description of these func-
tions is out of the scope of this work, and we refer the reader to
the books of Buhmann [5] and Wendland [24] for more technical
details.

There is a vast array of techniques designed to solve linear
systems. The interpolation matrix Φ is always symmetric (since
ϕij ¼ϕji) and, depending on the choice of kernel ϕ, it can be
positive-definite. In such cases, the Cholesky factorization is a
good choice, otherwise general factorizations such as LU or QR can
be used. The linear solvers used in this work are the ones available
in the LAPACK library [25].

The computation of the mapping function s is generally fast. In
fact, we showed that the process comes down to the solution of a
system of linear equations, whose size is determined by the
number of RBF centers. We assessed the time spent in the
computation of the mapping function plus the evaluation of 100
points for a different number of centers (10, 50 and 100) and data
dimensionality (varying from 50 to 450). The results presented in
Fig. 3 were achieved in the same machine configuration described
in Section 6. Note that the entire process is extremely fast even for
large number of centers and/or dimensions, rendering the techni-
que suitable for real-time applications.

In the proposed framework, the RBF centers come from
projected points of a given data set. Depending on the application,
and on the size of the data set in hand, all of the points could be
used as centers. Or, as an alternative, only a subset of these points
could be used. In the proposed face-synthesis application, we use
all of the points as RBF centers, mainly because we have a
manageable number of samples in our faces data set. However,
in Section 4.2, we briefly discuss possible approaches to filter out
and select few samples.

On the choice of radial basis kernels: It is clear that an appro-
priate choice of the kernel function and its parameters (when it is
the case) have a significant impact in the quality of the interpola-
tion results. Making this choice is, more often than not, a
nontrivial task that requires careful attention. A commonly used
approach to find an appropriate kernel is through trial-and-error,
by experimenting with various possibilities and analyzing their
outputs to make an informed decision. As an alternative, there are
some automatic methods designed to indicate a kernel function
and parameter definitions that would approximate well a given
data. Some of these methods are summarized in the works of
Mongillo [26] and Fasshauer et al. [27]. In this work we have found

through trial-and-error that the multiquadrics kernel function
with c¼0 performed well in our face-synthesis application, as
will be shown in Section 6. We encourage the reader who is keen
to use the proposed method to make a thorough investigation of
this matter using the aforementioned tools. It is important to keep
in mind, however, that these are only guidelines and this may
become a challenging task when working with radial basis
functions.

Algorithm 1. Building the RBF for inverse projection.

1: Given Y ¼ y1;…yN �R2 (projected data set, RBF centers);
2: Given X ¼ x1;…xN �Rm (original data set, RBF function

values);
3: Given RBF kernel function ϕ : Rþ-R

4: // Calculate interpolation matrix Φ
5: for i¼ 1…N do
6: for j¼ i…N do
7: Φ½i�½j� ¼Φ½j�½i� ¼ϕðJyi�yj J Þ
8: end for
9: end for
10:// Assemble right-hand side of system
11: for i¼ 1…N do
12: for j¼ 1…m do
13: b½i�½j� ¼ xi½j�
14: end for
15: end for
16: Solve system Φλ¼ b, to find λ

4.2. False neighbors and tears

The main goal of multidimensional projection is to reduce the
dimensionality of data sets in such a way that distances are
preserved as much as possible. In fact, a popular quality metric
used to validate the projection results is the stress function, which
measures how much distances between pairs of instances differ in
the high- and low-dimensional spaces. The stress function is
written as

stress¼
Pn

i;j ðdij�δijÞ2Pn
i;j ðdijÞ2

; ð6Þ

where dij and δij are the distances between instances i and j in the
high and low dimensional spaces, respectively. However, some
data sets are prone to severe distortions when projected to 2D.
Such distortions occur due to information loss during the dimen-
sionality reduction process and are characterized by the appear-
ance of false neighbors and tears in the 2D projection. These
artifacts may cause unwanted side-effects in the inverse projection
results.

As the names suggest, false neighbors consist of pairs of
instances where δij5dij, while tears present δij⋗dij [28]. The
presence of such artifacts can result in mapping functions that
are not coherent with the given data set. Thus, when many false
neighbors and tears are present, using all instances as RBF centers
in a global mapping function may not be the appropriate choice.

In these cases, one alternative could be to filter out the
instances in order to select more appropriate centers for the
mapping function. An interesting approach is the method pre-
sented in the paper of Amorim et al. [14] for center selection in
RBF interpolation. The authors use a technique called Regularized
Orthogonal Least Squares (ROLS) to select a meaningful set of
control points to be used in their multidimensional projection
technique. The projection results they achieve indicate that the

Fig. 3. Time evaluation of RBF inverse projection. For varying number of centers,
the time (in milliseconds) spent in the computation of the mapping function and
the creation of 100 samples is displayed.

E. Amorim et al. / Computers & Graphics 48 (2015) 35–47 39



control points selection through ROLS presents satisfactory results.
Another possibility to deal with false neighbors and tears could be
to use the control points of the multidimensional projection as
centers of the mapping function.

However, for some applications it may be important to have all
instances as RBF centers. This is the case, for example, of the face-
synthesis application we present in this work, where we want
each face in the data set to be represented in the mapping
function. In such cases, we propose to give the user the option
of generating one global mapping function, or several local
mapping functions. The former was previously presented and
consists of creating a single mapping function using every 2D
point yi as an RBF center. Therefore, the same mapping function is
used for all user-created 2D point p, a good alternative for
projections with low numbers of false neighbors/tears. For the
latter, we propose to divide the n centers into k clusters, based on
the distance information of the multidimensional data set, and
create one mapping function for each cluster. In doing so, we can
reduce the negative impact that false neighbors/tears may cause in
the back projection process.

To create the multidimensional clusters we take advantage of
the control points used in multidimensional projection. Let the set
of control points and its projected counterpart, respectively, be
Xs ¼ xc1;…; xck and YS ¼ yc1;…; yck. We propose to have one cluster
Cl for each MP control point xcl, where fðyi; xiÞACljdðxi; xclÞo
dðxi; xcmÞ8xcmAXsg. As previously mentioned, each cluster Cl gives
rise to a mapping function sl, using as RBF centers every yiACl.
When a 2D point p is created, we find its closest neighbor yi and
assign the function sl where ðyi; xiÞACl.

In order to validate the clustering approach, we conducted
experiments with data sets composed of random samples of
hyper-spheres. Hyper-spheres undergo severe information loss
when projected to a plane, causing false neighbors and tears.
We used hyper-spheres in four different dimensions (3, 5, 10 and
20) and 500 samples in each data set. We generated 200 random
points in the projection space, which were projected back to the
original hyper-sphere dimensionality. We calculated the distance
between the new 200 multidimensional points and the hyper-
sphere surface, and the results are presented in Fig. 4. We observe
that the multidimensional samples created using this approach are
closer to the hyper-sphere surfaces and thus more coherent with
the data set.

Note that this more local approach is suggested to be used
when the projection presents many distortions and all instances of
data should be a center in the RBF mapping function. In the
application we propose in this work, the global approach is more
suitable.

4.3. Multidimensional projection with control points

So far, we have not made any assumptions over the multi-
dimensional projection technique used to map the original data
set into a 2D space. In fact, the mathematical formulation of the
inverse projection, as proposed in this work, does not require this
mapping to be done in any special form. It only requires the
multidimensional position of the data samples and their corre-
sponding 2D projection, and the process that makes this mapping
is not necessarily known and can be considered as a black-box.
However, recent multidimensional projection techniques provide
a mechanism that we believe can be beneficial to the data
exploration in the inverse projection framework. This mechanism
allows user manipulation of the projection space and is accom-
plished by the use of control points.

Control points have been recently introduced in multidimen-
sional projection as a way to give users control, in some extent,
over the projection results [3,14]. They are special projected data

points that can be manipulated and rearranged in the projection
space, causing the remaining points in the projection to be rear-
ranged accordingly. This can help users to gain more insight about
the data set and also allows expert knowledge to be incorporated
in the projection process. This mechanism is particularly useful in
the inverse projection framework, as it can help users to give more
focus to target areas, by isolating control points of interest in the
projection space. Fig. 5 presents an example of how the control
points can be a valuable tool in the faces-synthesis application.
We show that, through the manipulation of control points, one is
able to isolate particular instances of faces and generate new faces
that are more similar to them.

5. Synthesis of faces and expressions

The synthesis of 3D face models is an important research topic
and has been studied for more than three decades [29]. Different
approaches have been proposed to achieve 3D face reconstruc-
tions [29–32]. Nguyen et al. [33] classify the problem of 3D face
synthesis in three categories based on the input information used:
(1) 3D scan, (2) Multi 2D images, and (3) a single 2D image.

Parke introduced the first parameterized facial model [34] to
shape interpolations and then animate a face. In previous work,
Cohen and Massaro [35] used a model of co-articulation and a set
of animation parameters to control the face shape. Blanz and
Vetter [30] present a morphable model method based on a 3D face
database of registered laser scans. An analysis-by-synthesis pro-
cess conducts the reconstruction. It is important to note that the
output is lifelike, but it requires expensive computation to deter-
mine the parameters, besides user interaction and manual work to
mark the facial landmarks [33].

Recent works were devoted to the study of single view-based
3D face synthesis. Sheng et al. [36], Nguyen et al. [33] and Patel
and Zaveri [37] describe different robust 3D face synthesis systems
which use a single frontal face image. None of these approaches
represents the face database as a multidimensional space to
generate new 3D faces from existing ones.

Fig. 4. Experiment to validate the RBF projection when applied to distorted
projections using 4 data sets. 500 random samples on the surface of hyper-spheres
of 3, 5, 10 and 20 dimensions were used, each dimension forming a separate data
set. 200 random sample points are generated in the projection space, and mapped
back using one global and several local mapping functions. The boxplots indicate
the distance between the multidimensional points generated and the sphere.

E. Amorim et al. / Computers & Graphics 48 (2015) 35–4740



The work of Buck et al. [38] uses a frontal face image as an
input to generate non-photorealistic faces. Using an initial data set
of a hand-drawn character, with 6 mouth and 4 eye expressions,
the user manually establishes the correspondence between hand-
drawn elements and similar expressions given by photographs.
Given a new user expression, a tracking system finds certain face
features and tries to recreate a hand-drawn character using a
combination of the existing ones. Similar to our approach, the
authors propose to reduce the dimensionality of the training data
in order to find a Delaunay triangulation which will aid the
algorithm in finding the weights for the interpolation. However,
this step is automatic and does not involve the user, as opposed to
what we propose.

Some works propose to use interpolation to achieve animation
between poses or facial expressions. Similar to our work, Lewis
et al. [39] use RBFs to create such interpolation. However our
approach provides the projection space over which the user can
navigate and abstract the various parameters that may be involved
in the process.

In this work, we propose to use our inverse projection
approach as an interface that allows users to rapidly create new
3D faces, a by-interaction process. In this approach the user is not
required to provide a 2D image to generate a new face, but an
initial data set of images is used to let the user navigate and
resample the space of faces. Each face in the data set is repre-
sented by a multidimensional vector, that contains geometric and
texture information (Section 5.1). The first step of the inverse
projection framework is to find a 2D representation of the data set.
The 2D projection space becomes the resampling media over
which the user is able to create a point pAR2 (Section 5.2). The
point p is transformed into a multidimensional point q (Section 4).
Finally, the point q is passed as an input to a face-generator
procedure, that returns the geometric and texture information of
the new face (Section 5.3). This work flow is presented in Fig. 6.

The application we present in this work is based on the work
of Mena-Chalco et al. [6], that uses a single 2D photograph as an
input to generate a new 3D face model. In their work, the
face synthesis is accomplished through a training set with 210

previously acquired faces with different expressions, each of which
carrying geometric and texture information. The geometric and
texture information of each face is encoded as a multidimensional
vector, what makes this a good application for our inverse
projection method.

There are three main reasons that made us choose the face-
synthesis application to validate our method and demonstrate the
applicability of our technique: (1) the synthesis of faces is an
important problem with applications in various areas; (2) there
are some important works in the literature that consider
the human faces data sets to be embedded in multidimensional
nonlinear manifolds [40,12]. This characteristic makes face data
sets good candidates for having its dimensionality reduced through
multidimensional projection, which is an essential step in our
inverse projection framework (Fig. 1); and (3) humans have the
natural ability to evaluate how realistic a face is, making it easy to
attest the quality of the faces generated through our technique.

5.1. Input data set

The data set used in this work was created by IMPA [41] and
consists of 210 faces acquired from 30 individuals performing

Fig. 5. Example of control points' manipulation in the inverse projection framework, with 3D faces data set; (a) presents the projection of a data set with 30 faces, and 15
control points – the control points are the ones rendered with the face texture, while black points are the remaining instances of the data set; (b) presents the projection
after the reorganization of control points positions; in this example, 4 control points were isolated in the top left corner of the projection space (highlighted in red); a 2D
point created by the user (blue circle) created a new 3D face. (c) is another example of reorganization of control points position, where 4 different control points were
isolated in the same top left corner (again highlighted in red); a new user-defined point, roughly in the same position as in the example (b), generates a different 3D face. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 6. Synthesis of faces and expression application workflow. Given a data set of
faces represented in a multidimensional space, a multidimensional projection
technique is applied resulting in a 2D representation of the data. The user is able
to create new 2D points that are converted into the original dimensionality of the
data set of faces through inverse projection. The new multidimensional point
undergoes a series of calculations that give rise to a new facial model.

E. Amorim et al. / Computers & Graphics 48 (2015) 35–47 41



7 basic expressions (happy, sad, anger, disgust, surprise, fear and
neutral). Fig. 7 presents the face models of one of the subjects in
the data set performing the various expressions.

Each face in the data set contains geometric and texture
information measured in M¼9648 corresponding points of the
model. For example, the i th face in the data set can be represented
by geometric (Lig) and texture (Lit) vectors, as seen below:

Lgi ¼ ðxi1;…; xiM ; yi1;…yiM ; zi1;…ziMÞ;

Lti ¼ ðri1;…; riM ; gi1;…giM ; bi1;…biMÞ;

where ðxij; yij; zijÞ and ðrij; gij; bijÞ are, respectively, 3D geometric
coordinates and RGB values of the texture of the j th point. Thus,
the representation of the data set of faces is given by matrices Lg

and Lt, whose i th rows are Li
g and Li

t, respectively.
As detailed in the work of Mena-Chalco et al. [6], the repre-

sentation of the data set of faces is simplified by performing a
principal component analysis in both the geometric and texture
matrices separately. In this process, vector bases for geometry (Eg)
and texture (Et) are formed, each with 184 principal components
that preserve at least 95% of the original information. The vectors
Li
g and Li

t are then projected into the vector bases Eg and Et, creating
coefficients vectors αi

g and αi
t for each face in the data set.

In the aforementioned work, the bases Eg ; Et , along with vectors
αi
g and αi

t, are used as the training data to synthesize 3D face
models given 2D textures of a frontal face as an input. In their
synthesis workflow, the input texture xt is projected into Et and the
texture coefficients αx

t are calculated. The last step is to find
the geometric coefficients αx

g based on an equivalence with αx
t ,

and the new 3D face model is constructed.
In this work, we want to create a new face, both texture and

geometry, using a coefficient vector αx
t as an input, i.e., given a

184-dimensional vector αx
t , we calculate xt and αx

g. (How this
calculation is done is presented in details in Section 5.3.) In order
to create αx

t using the inverse projection framework, the input data
set needs to be in the same format of αx

t . Therefore, each face i in
the input data set is represented by its coefficient vector αi

t, giving
us a initial data set of 184 dimensions. In the next section we detail
the interface for this application.

5.2. Interface

In this application, the interface provided by inverse projection
is a screen that depicts the various faces of the input data set,
positioned according to the results of a multidimensional projec-
tion technique. With the original dimensionality being reduced
from 184 to 2, the parameter-space of the faces can be explored in
the 2D layout. Using control points provided by most recent
projection techniques [1,3,14], the user is able to reorganize the
layout of the faces. Once a pleasing layout is achieved, the user can
create a new face by simply generating a 2D point in the same
screen where the projection is displayed. The complexities of the
multidimensional space are completely hidden from the user, who
can focus on creating points on regions of interest in the screen.
When a 2D point is created, the resulting face is displayed in a
separate 3D visualizer window. All the process is done in real time.
Fig. 8 depicts the interface of the system.

The process to transform the 2D point into the original multi-
dimensional space is given by the inverse projection methodology

Fig. 7. Geometric model with mapped texture of one of the individuals in the data set performing 7 basic expressions: (a) neutral; (b) happy; (c) sad; (d) surprise; (e) anger;
(f) disgust; and (g) fear.

Fig. 8. Interface for facial synthesis application. The left screen contains the
projection of the initial data set of faces (in this example 30 faces with neutral
expression are used). The control points are rendered with their corresponding
facial textures, while the remaining faces are represented as black circles. The blue
circle indicates a user-created point, which resulted in the face model depicted in
the right screen. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)

E. Amorim et al. / Computers & Graphics 48 (2015) 35–4742



described in Section 4. We present in the next section the process
to create the geometry and texture of the new face given the
multidimensional vector produced by inverse projection.

5.3. Face generation process

Let t0 and g0 be, respectively, the average between the textures
and geometries of the training data set. Given αx

t , the process of
creating a new face is divided into texture and geometry recon-
structions. The reconstruction of texture xt is straightforward and
consists on applying vector αx

t into basis Et:

xt ¼ Etαt
xþt0: ð7Þ

The reconstruction of the geometry is achieved in 3 main steps:
first, the texture coefficients of the faces in the data set are used to
calculate coefficients sx, αtsx ¼ αt

x, where αt is a matrix with i th
row being the texture coefficient αi

t of the i th face of the training
set; sx is calculated through a least-squares process, in such a way
that Jαt

xsx�αt J is minimized. The second step is to calculate the
weight vector αx

g, as αg
x ¼ αgsx. Finally, the geometry xg is calcu-

lated by applying vector αx
g into basis Eg:

xg ¼ Egαg
xþg0: ð8Þ

5.4. Expression transfer

Once a new face model is created, it can be interesting to also
create its different expressions. As part of this application, we
provide an “expression transfer” mechanism that permits the
change of a face model basic expression into any of the other six
basic expressions. This is done by means of “displacement vectors”
that indicate the direction to which each vertex in the geometric
model needs to be displaced to achieve the desired expression.
Although the technique described in this section is not the most
advanced in terms of expression transfer, its simplicity enables
straightforward implementation and yields good results for the
given application.

As previously discussed, the input data set contains 210 face
models of 30 individuals performing the seven basic expressions
each. The displacement vectors are calculated using the geometric
information of these models. First, a geometric mean face is
calculated for each of the seven expressions xgi ; i¼ neutral, happy,
sad, anger, disgust, surprise and fear. We calculate displacement
vectors Δxneutral-i between each expressions’ mean and the
neutral mean as

Δxneutral-i ¼ xgneutral�xgi : ð9Þ
Given a face geometry xi

g with expression i, we can have
expression j transferred into it by doing xgi-j ¼ xgi �ΔxNeutral-iþ
ΔxNeutral-j. Notice that this procedure only modifies the geometry
of the face, while the texture remains intact.

Once we have the expression mapped into the face model, it is
important to recover the αx

t vector associated with the new face, in
order to be able to load it in the system for further exploration. We
do so by computing the reverse of what is shown is Section 5.3,
i.e., we start from the geometric information and recover the
texture: αg

x ¼ ðEgÞT ðxgi-j�g0Þ, then αgsx ¼ αg
x and finally αt

x ¼ αtsx.

6. Results and discussion

In this section we present some results achieved in the face-
synthesis application with inverse projection. The experiments
presented in this section were executed in a 2.80 GHz Intel Core i7
CPU 860 with 12 GB of RAM. The computational time spent in the
inverse projection and in the face-generator process is generally in

the order of the milliseconds. In fact, the results are achieved in
real time, as no noticeable delays are observed from the moment
the user creates a new 2D point to the moment when the new face
model is displayed. The training phase is the most computationally
demanding of the face-generator process, since a principal com-
ponent analysis need to be carried out as well as a least-squares
solution. However, this process only takes a few seconds and can
be done one time only as the application starts.

In the experiments, we used every face in the input data set as
an RBF center. This was considered important in this application
because it allows the users to recreate every face in the data set
and all the faces have equal importance in the inverse mapping.
The kernel function used was the multiquadrics with c¼ ϵ¼ 0, i.e.,
ϕðrÞ ¼ r.

As explained in Section 5, the training set of faces used in this
work is composed of 210 faces of 30 individuals performing
7 different expressions. Note that this complete 210 faces data
set is used to reconstruct the 3D and texture information of the
new face, but a subset of it can be used in the inverse projection
process. In fact, we experimented with three variations of this
data set:

� Experiment 1 (neutral data set): only the neutral expressions of
the 30 individuals are used, i.e., the data set contains 30 faces.
In this experiment, the focus is to create a new character with
neutral expression.

� Experiment 2 (individual data set): all the expressions of one
single individual are used, i.e., the data set contains 7 faces. In
this experiment the focus is to create transitional expressions
of a single character.

� Experiment 3 (miscellaneous data set): all the 210 faces are used.
The focus of this experiment is the creation of new characters
and different expressions.

� Experiment 4 (expression transfer): using initially the neutral
data set, a new neutral character is created. The remaining six
expressions of this character are generated (see Section 5.4)
and loaded into the program to create its transitional
expressions.

6.1. Results

Experiment 1: Fig. 9 presents some results achieved with the
data set of only neutral expressions of 30 individuals. We show
5 examples of user-generated faces. We strategically positioned

Fig. 9. Example using 30 individuals with neutral expression. The textures with
black background represent the control points of the multidimensional projection.
Black points represent the remaining faces in the data set. The 3D face models are
the user-generated faces through inverse projection.

E. Amorim et al. / Computers & Graphics 48 (2015) 35–47 43



the 3D face models on top of the projection space, in the position
the 2D point was generated. It is clear that the user-generated
faces will be more or less similar to specific input faces depending
on the position the new 2D point is created.

Experiment 2: Fig. 10 presents an example of using only one
individual with the seven expressions as input data. We demon-
strate how one can create expressions in between existing
expressions. Because of the continuity and smoothness provided
by RBF projection, the sequence of continuous user-generated
faces present a smooth transition and an animation-like effect.

To illustrate this example, we create a path of 20 user-
generated points (blue points in the projection space), and we
present the face models generated in those positions. Going from
surprise to fear (points 1–4), fear to neutral (5–7), neutral to angry
(8 and 9), angry to happy (10–12) happy to disgust (13 and 14)
disgust to sad (15 and 16) and sad to surprise (17–20). The faces
generated in points 3 and 4 are good examples of blending of two
expressions, namely surprise and fear. Note how the half-open
mouth indicates surprise, whereas the expression of the eyes
indicates fear.

Note that, as the user-generated point gets close to a particular
projected point, the face model becomes more and more similar to
the original face. The interpolation condition in the RBF formula-
tion also assures that, by creating a point at the same location as a
projected point, the resulted face is the exact original model.

Experiment 3: In Fig. 11 we present some results achieved using
the complete data set with 210 faces. Since we have various
individuals performing different expressions as an input, we are
able to generate new characters with varying expressions and
expressions in between. This is illustrated by 6 new models
generated through inverse projection, placed on their correspond-
ing position of the projection space.

Experiment 4: In this example we show that, besides generating
a new character, all its different expressions can also be calculated
using the displacement vectors explained in Section 5.4. Starting
from the neutral data set, the new character with neutral expres-
sion is defined (Fig. 12(a) and (b)). The various expressions are
then computed for this character (Fig. 12(c)), as described in
Section 5.4. The corresponding αx

t 's of each expression are calcu-
lated and saved into a separate file, which can later be loaded into
the inverse projection system for further exploration of the new
character, as illustrated in Fig. 12(d). We create transitional
expressions for the new character and we show 7 of them in
Fig. 12(e).

The accompanying videos provide a clear idea of how our
interface operates integrating the inverse projection method with
the face-synthesis application. The first video shows experiments
1, 2 and 3 in action, whereas the second video presents the
expression transfer interaction explained in experiment 4.

6.2. Evaluation

In order to evaluate the quality of the face models generated by
our system, we have conducted an informal study with 99 people
from various age groups, educational levels and knowledge of
computer graphics (Fig. 13). The concept of quality here means
that the new face model is (1) as realistic as the faces in the data
set and (2) unique in comparison with the original faces in the
data set.

For the evaluation of (1) we displayed 8 faces (Fig. 14), half of
them from the original data set and the other half created using
the proposed method. We asked the participants to classify each of
the face models as “Scanned” or “Synthesized”. Some face models
were classified incorrectly by the majority of the participants, e.g.
Face 02 (74% scanned), Face 03 (66% synthesized), Face 05 (60%
scanned) and Face 06 (70% synthesized). The results for Faces 01,

07 and 08 were close to a tie, being 53%, 46% and 44% classified
as Scanned, respectively. Face 04 was correctly classified by
the majority, having 61% of the participants classifying it as
synthesized.

The results of this experiment support the claim that our
method is capable of creating faces that are as realistic as the
ones from the original data set, since the synthesized faces were
not easily distinguished by the participants. For this to hold true,
the chosen RBF kernel and its corresponding parameters, when
any, need to be carefully chosen and tuned. In this particular
application, we have found that the multiquadrics kernel with

Fig. 10. Example using only one individual performing 7 expressions expressions as
data set. All seven face models are used as control points in this example. The user
created path through inverse projection, illustrated by the numbered blue points in
the projection space, result in the depicted face models. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)

E. Amorim et al. / Computers & Graphics 48 (2015) 35–4744



parameter c¼0 is a good choice and gives realistic results, as was
stated earlier. We reiterate, however, the importance of carefully
evaluating the RBF kernels when applying this method to different
data sets.

For the evaluation of (2), we presented two sets with 10 faces
each: the first set containing 10 face models from the original data
set that were used as an input to generate 10 other faces,
presented in the second set (Fig. 15). We asked the participants
to indicate for each face in set 2 to which face in set 1 it was more
similar to, or the option to choose “NONE”. Faces B and H were
mostly found not to be similar to any faces in set 1 (35% and 30%
respectively), and all of other faces in set 1 received less than 20%
of association. Faces C and J also had a large percentage of the
participants indicating “NONE” (27% and 28%, respectively), but
both were also strongly associated with a Face in set 1: Face C had

Fig. 11. Example using the complete 210 faces data set, with all individuals and
expressions. Using such a data set, we are able to generate new characters with
different expressions, as illustrated by the 3D face models depicted in the
projection.

Fig. 12. Expression transfer; (a) projection space and user-defined point (blue); (b) new character with neutral expression; (c) new character with different expressions
calculated as demonstrated in Section 5.4. (d) New character with different expressions loaded into inverse projection system; (e) 7 points in the projection space are created
to demonstrate transitional expressions for new character. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
paper.)

Fig. 13. Summary of the 99 participants that responded to our informal study.

Fig. 14. Set of faces used for the first evaluation. Faces 01, 03, 06 and 07 are from
the original data set; the remaining are face models created through our system.

E. Amorim et al. / Computers & Graphics 48 (2015) 35–47 45



48% association with Face 02 and Face J 55% with Face 08. For all
faces created by our system, “NONE” was the only common
answer for all of them, which indicates that our system was able
to create unique faces.

Some faces were mostly associated with only one face in set 1.
For example, Face A was 67% associated with Face 03, but also
presented considerable associations with Faces 04 and 06, 14% and
12% respectively; and Face E was associated with Face 04 by 57% of
the participants and with Face 06 by 26%. Other faces were
strongly associated with two faces in set 1. For example, Face D
was considered to be similar to Faces 03 (39%) and Faces 08 (37%);
while Face I presented 35% of association with Face 01 and 30%
with Face 02. Finally, some faces were similarly associated with
3 or more faces in set 1. For example, Face G was associated with
Faces 07, 08, and 10–28%, 15%, and 38% respectively; and Face F
was associated with Faces 01, 04, 06, and 09–19%, 12%, 27% and
22% respectively.

These results are an indicative that our system is able to create
new faces that resemble those used in the given data set but are
still unique and original, as there was no consensus among the
participants concerning the similarities between faces from both
groups. These results can be even more appreciated for the fact
that the faces from Set 2 were created entirely based on faces from
Set 1. Even though the number of input faces is reduced, the
system still demonstrated its ability to generate unique characters.
This behavior may be attributed mostly to the control points
manipulation (Section 4.3), that permits multiple configurations of
faces layouts and, consequently, allows greater output variety.
In fact, most of the faces in Set 2 were generated after reorganizing
the projection layout to achieve a desired result.

It is important to remark that, as an informal study, these
results do not validate our system, but they certainly shed some
light into its capability of generating unique yet coherent para-
meter combinations.

6.3. iLAMP vs RBF

In this section we discuss why the RBF solution presented in
this paper is more suitable to the application of face synthesis
than iLAMP.

iLAMP is not continuous in its nature as it is designed to use
only a few k neighbor points to create the mapping from low to
high dimension. Thus, a different set of neighbors is used for each
new user-defined point, making the mapping discontinuous.
Continuity is an important characteristic for the face synthesis
application, as it enforces continuous points in the 2D projection
space to create a smooth transition of faces, giving it an animation-
like effect. Of course, the discontinuity in iLAMP could be easily
prevented by setting the number of neighbors equal to the number
of points in the data set, i.e., k¼N. However, the iLAMP solution
presents yet another disadvantage that is maximized when the
number of neighbors k increases: it may become prone to severe
distortions if the user modifies the projection layout (as seen in
Section 4.3).

For each user-generated point p iLAMP searches for a local
affine transformation siLAMP : R2-Rm to map p into qARm. siLAMP is
the affine transformation that minimizes

Xk

i ¼ 1

βi J f iLAMPðyiÞ�xi J2; ð10Þ

i.e., it maps, as best as possible, the projected points yi into their
multidimensional counterpart xi. The βi weights are used to assign
greater importance to the mapping of those yi closer to the user-
defined p. If distances between pairs of instances are well
preserved in the projection space, this solution will generally yield
good, non-distorted results. However, when the points in the
projection space are deliberately rearranged by the user, the
iLAMP solution may produce distorted results, i.e., it may not be
able to generate an affine mapping siLAMP that maps yi to points
close to xi.

In fact, we evaluated the iLAMP error given by Eq. (10) for k¼N
in the neutral data set. When points in the projection space are
repositioned from its original projection, this error can become
more than two times greater when compared to the error before
the repositioning. Such a distorted mapping can result in points q
that little have to do with the original xi vectors, potentially
resulting in deformed faces as exemplified in Fig. 16.

7. Conclusion and future work

In this work, we have proposed a novel inverse projection
technique based on radial basis function interpolation. This
method allows the exploration of a multidimensional space in a

Fig. 15. The two sets of faces used in the second evaluation. Set 1 contains faces
of the original data set, that were used as an input to create the faces displayed
in Set 2.

Fig. 16. Top row: faces generate through iLAMP after rearrangement of projection
space; bottom row: corresponding faces generated through our RBF solution.

E. Amorim et al. / Computers & Graphics 48 (2015) 35–4746



2D perspective provided by multidimensional projection. The
proposed technique is smooth and global, in contrast to other
inverse-projection technique coined iLAMP, and we demonstrate
its usability in an application of faces-synthesis. We discuss that
the proposed technique is more suitable for some applications,
specially when user intervention is expected to be carried out in
the projection space.

In the application we present, all the instances of the input data
set are used as RBF centers to construct the inverse mapping
function. However, data sets with many points might need to have
a more careful selection of control points. We presented some
alternatives in Section 4.2 but a more careful inspection about the
proposed methods still needs to be conducted.

A more thorough investigation regarding the RBF kernel func-
tions ϕ is also an interesting direction in this research. In the
examples presented we used ϕðrÞ ¼ r, but it would be interesting if
one could determine an appropriate kernel function based on the
data set. We also intend to investigate the use of the Gaussian
kernel and its shape parameter as a way to give the user some
control over the radial of influence of each face in the inverse
projection. As a last consideration about RBF kernels, we plan to
evaluate the use of polynomial extensions in our technique [5].
Studies have shown that the use of polynomial terms in RBF kernel
functions can improve the function approximation in some cases.
The polynomial terms permits, for instance, the creation of a
function that samples a sphere embedded in Rn precisely.

In terms of application, we want to expand the technique so
that it can be used with different data sets that have a strong visual
appeal, such as texture generation and dance choreography [42].

Acknowledgments

We would like to thank our colleagues for their useful discus-
sions and advice. We also thank the anonymous reviewers for
their careful and valuable comments and suggestions. This
research was supported in part by the NSERC/Alberta Innovates
Technology Futures (AITF)/Foundation CMG Industrial Research
Chair program in Scalable Reservoir Visualization. We also
acknowledge Brazilian funding agencies Fapesp (#2011/22749-8)
and CNPq (#302643/2013-3).

Appendix A. Supplementary material

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.cag.2015.02.009.

References

[1] Paulovich F, Silva C, Nonato L. Two-phase mapping for projecting massive data
sets. IEEE Trans Vis Comput Graph 2010;16(6):1281–90.

[2] Pekalska E, de Ridder D, Duin RP, Kraaijveld MA. A newmethod of generalizing
Sammon mapping with application to algorithm speed-up. In: 5th annual
conference of the advanced school for computing and imaging; 1999.

[3] Joia P, Coimbra D, Cuminato JA, Paulovich FV. Local affine multidimensional
projection. IEEE Trans Vis Comput Graph 2011;17(12):2563–71.

[4] Amorim E, Vital Brazil E, Daniels II J, Joia P, Nonato LG, Costa Sousa M. iLAMP:
exploring high-dimensional spacing through backward multidimensional
projection. In: IEEE VAST. IEEE Computer Society; 2012, p. 53–62.

[5] Buhmann MD. Radial basis functions. New York, NY, USA: Cambridge
University Press; 2003.

[6] Mena-Chalco JP, Macêdo I, Velho L, Cesar Jr. RM. 3D face computational
photography using PCA spaces. Vis Comput 2009;25(10):899–909.

[7] Inselberg A, Dimsdale B. Parallel coordinates: a tool for visualizing multi-
dimensional geometry. In: Proceedings of the 1st conference on visualization,
VIS '90; 1990. p 361–78.

[8] Cleveland WS. The elements of graphing data. Belmont, CA, USA: Wadsworth
Publ. Co.; 1985.

[9] Jollife I. Principle component analysis; 1986.
[10] Cox T, Cox M. Multidimensional scaling. 2nd ed.Chapman and Hall/CRC; 2000.

[11] Sammon J. A nonlinear mapping for data structure analysis. IEEE Trans
Comput 1964;13:401–9.

[12] Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embed-
ding. Science 2000;290(5500):2323–6.

[13] Tenenbaum J, de Silva V, Langford J. A global geometric framework for
nonlinear dimensionality reduction. Science 2000;290(5500):2319–23.

[14] Amorim E, Brazil EV, Nonato LG, Samavati F, Sousa MC. Multidimensional
projection with radial basis function and control point selection. In: PacificVis;
2014. p. 209–16.

[15] Mamani GMH, Fatore FM, Nonato LG, Paulovich FV. User-driven feature space
transformation. Comput Graph Forum 2013;32(3):291–9.

[16] Bruckner S, Möller T. Result-driven exploration of simulation parameter spaces
for visual effects design. IEEE Trans Comput Graph 2010;16(6):1467–75.

[17] Pretorius AJ, Bray MA, Carpenter AE, Ruddle RA. Visualization of parameter
space for image analysis. IEEE Trans Comput Graph 2011;17(12):2402–11.

[18] Wang B, Ruchikachorn P, Mueller K. SketchPadN-D: WYDIWYG sculpting and
editing in high-dimensional space. IEEE Trans Vis Comput Graph 2013;19
(12):2060–9.

[19] Torsney-Weir T, Saad A, Möller T, Hege HC, Weber B, Verbavatz JM. Tuner:
principled parameter finding for image segmentation algorithms using visual
response surface exploration. IEEE Trans Vis Comput Graph 2011;17(12):1892–901.

[20] van Wijk JJ, van Liere R. Hyperslice: visualization of scalar functions of many
variables. In: Proceedings of the 4th conference on visualization '93, VIS '93.
Washington, DC, USA: IEEE Computer Society; 1993. p. 119–25. ISBN 0-8186-
3940-7.

[21] Endert A, Han C, Maiti D, House L, Leman S, North C. Observation-level
interaction with statistical models for visual analytics. In: 2011 IEEE con-
ference on visual analytics science and technology (VAST); 2011. p. 121–30.
http://dx.doi.org/10.1109/VAST.2011.6102449.

[22] Endert A, Bradel L, North C. Beyond control panels: direct manipulation for
visual analytics. IEEE Comput Graph Appl 2013;33:6–13. http://dx.doi.org/
10.1109/MCG.2013.53.

[23] Monnig ND, Fornberg B, Meyer FG. Inverting non-linear dimensionality
reduction with scale-free radial basis interpolation. CoRR; 2013. abs/1305.0258.

[24] Wendland H. Scattered data approximation. New York: Cambridge University
Press; 2004.

[25] Anderson E, Bai Z, Dongarra J, Greenbaum A, McKenney A, Du Croz J, et al.
LAPACK: a portable linear algebra library for high-performance computers. In:
Proceedings of the 1990 ACM/IEEE conference on supercomputing, Super-
computing '90; 1990. p. 2–11.

[26] Mongillo M. Choosing basis functions and shape parameters for radial basis
function methods. SIAM Undergraduate Research Online; 2011.

[27] Fasshauer G, Zhang J. On choosing “optimal” shape parameters for RBF
approximation. Numer Algorithms 2007;45(1):345–68.

[28] Martins RM, Coimbra DB, Minghim R, Telea AC. Visual analysis of dimension-
ality reduction quality for parameterized projections. Comput Graph
2014;41:26–42. http://dx.doi.org/10.1016/j.cag.2014.01.006.

[29] Levine MD, Yu Y. State-of-the-art of 3D facial reconstruction methods for face
recognition based on a single 2D training image per person. Pattern Recognit
Lett 2009;30(10):908–13.

[30] Blanz V, Vetter T. A morphable model for the synthesis of 3D faces. In:
Proceedings of the 26th annual conference on computer graphics and
interactive techniques, SIGGRAPH '99; New York, NY, USA: ACM Press/
Addison-Wesley Publishing Co.; 1999. p. 187–94.

[31] Kirtzic JS, Daescu O. Face It: 3D facial reconstruction from a single 2D image
for games and simulations. In: 2013 International conference on cyberworlds,
vol. 0; 2011. p. 244–8.

[32] Macêdo I, Vital Brazil E, Velho L. Expression transfer between photographs
through multilinear AAM's. In: Proceedings of SIBGRAPI 2006—XIX brazilian
symposium on computer graphics and image processing. IEEE Computer
Society; 2006. p. 239–46.

[33] Nguyen HT, Ong EP, Niswar A, Huang Z, Rahardja S. Automatic and real-time
3D face synthesis. In: VRCAI'09; 2009. p. 103–6.

[34] Parke FI. A parametric model for human faces [PhD thesis]; 1974. AAI7508697.
[35] Cohen MM, Massaro DW. Modeling coarticulation in synthetic visual speech.

In: Models and techniques in computer animation. Tokyo: Springer-Verlag;
1993. p. 139–56.

[36] Sheng Y, Sadka AH, Kondoz AM. Automatic single view-based 3-d face
synthesis for unsupervised multimedia applications. IEEE Trans Circuits Syst
Video Technol 2008;18(7):961–74.

[37] Patel N, Zaveri M. 3d facial model construction and expressions synthesis
using a single frontal face image. Int J Graph 2010;1:1–18.

[38] Buck I, Finkelstein A, Jacobs C, Klein A, Salesin DH, Seims J, et al. Performance-
driven hand-drawn animation. In: NPAR 2000: first international symposium
on non photorealistic animation and rendering; 2000. p. 101–8.

[39] Lewis JP, Cordner M, Fong N. Pose space deformation: a unified approach to
shape interpolation and skeleton-driven deformation. In: Proceedings of the
27th annual conference on computer graphics and interactive techniques,
SIGGRAPH '00. ACM Press/Addison-Wesley Publishing Co.; 2000. p. 165–72.

[40] He X, Yan S, Hu Y, Niyogi P, Zhang HJ. Face recognition using Laplacian faces.
IEEE Trans Pattern Anal Mach Intell 2005;27(3):328–40.

[41] Computer Graphics Laboratory, I. VISGRAF faces database. 〈http://app.visgraf.
impa.br/database/faces〉; 2012. [Online; accessed 31.03.2014].

[42] Schulz A, Velho L. ChoreoGraphics: an authoring environment for dance
shows. In: ACM SIGGRAPH 2011 Posters. SIGGRAPH '11; New York, NY, USA:
ACM; 2011. p. 1.

E. Amorim et al. / Computers & Graphics 48 (2015) 35–47 47

http://dx.doi.org/10.1016/j.cag.2015.02.009
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref1
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref1
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref3
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref3
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref5
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref5
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref6
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref6
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref8
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref8
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref10
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref11
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref11
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref12
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref12
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref13
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref13
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref15
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref15
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref16
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref16
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref17
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref17
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref18
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref18
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref18
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref19
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref19
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref19
dx.doi.org/10.1109/VAST.2011.6102449
http://dx.doi.org/10.1109/MCG.2013.53
http://dx.doi.org/10.1109/MCG.2013.53
http://dx.doi.org/10.1109/MCG.2013.53
http://dx.doi.org/10.1109/MCG.2013.53
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref24
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref24
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref27
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref27
http://dx.doi.org/10.1016/j.cag.2014.01.006
http://dx.doi.org/10.1016/j.cag.2014.01.006
http://dx.doi.org/10.1016/j.cag.2014.01.006
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref29
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref29
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref29
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref36
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref36
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref36
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref37
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref37
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref40
http://refhub.elsevier.com/S0097-8493(15)00023-0/sbref40
http://app.visgraf.impa.br/database/faces
http://app.visgraf.impa.br/database/faces

	Facing the high-dimensions: Inverse projection with radial basis functions
	Introduction
	Related work
	Interactive inverse projection framework
	Inverse projection through radial basis functions
	Mathematical formulation
	False neighbors and tears
	Multidimensional projection with control points

	Synthesis of faces and expressions
	Input data set
	Interface
	Face generation process
	Expression transfer

	Results and discussion
	Results
	Evaluation
	iLAMP vs RBF

	Conclusion and future work
	Acknowledgments
	Supplementary material
	References




