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a b s t r a c t

Production data analysis for low-permeability unconventional reservoirs is a challenging task, particu-
larly for cases where multi-phase flow occurs within the reservoir. Analytical models developed to ac-
count for multi-phase flow typically require calculation of pseudo variables, which in turn require
knowledge of relative permeability and fluid data. In the presence of sparse sampling, the analytical
models often do not provide satisfactory results when there are so many unknown parameters. In such
situations, numerical models are better suited, using a history matching framework to assist with
reservoir and fluid characterization.

In this work, we implement an assisted history-matching routine to characterize reservoir fluids and
extract reservoir and hydraulic fracture properties for a hydraulically-fractured horizontal well
completed in a tight gas condensate reservoir within the Montney Formation in western Alberta, Canada.
The initial water distribution (e.g. movable water profile in the reservoir), in situ fluid (e.g. initial hy-
drocarbon composition with C7þ properties) and reservoir properties (e.g. permeability in the matrix and
around the fracture, and pressure dependent fracture permeability) are described in terms of 20 un-
known parameters, which creates a high-dimensional inverse problem. We use the Differential Evolution
algorithm, which is a powerful population-based optimization algorithm, and employ numerical
compositional simulations to match pressure, water and hydrocarbon rates, and surface compositions of
the produced fluids. Application of this optimization routine results in a good match to all measured
data. The DE algorithm is repeated for an extra run to check for the existence of other non-unique so-
lutions. The history-match results helped determine parameters for well/reservoir description and
develop a compositional fluid model based on the measured separator composition data. The collected
samples for both DE runs, along with one thousand extra samples from quasi-random sequence sampling
design, provide a pool of data with invaluable information that are used to perform the global sensitivity
analysis and to rank the contribution of each descriptive parameter on the variances of the reservoir
outputs. In this way, the value of production data and surface compositions for the characterization of
reservoir and fluid is quantified.

This work aims to provide a practical and simple workflow for analysis of unconventional reservoirs
where the direct analytical approaches cannot be applied.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Unconventional reservoirs with ultra-low permeability, such as
shales, while containing abundant hydrocarbon resources, are
difficult to produce using conventional techniques. Commercial
production from such reservoirs typically requires the drilling of
long horizontal wells completed in multiple hydraulic fracturing
stages (multi-fractured horizontal wells or MFHWs). The intent of
hydraulic fracturing is to increase the contact between the ultra-
low matrix volume and the conductive fractures; fracture geome-
try may be very complex, depending on the combination of in-situ
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rock properties, stress and hydraulic fracture design. As a result,
production to the MFHWs may be initially dominated by transient
linear flow from the low-permeability matrix to the fractures
(Nobakht and Clarkson, 2011, 2012; Nobakht and Mattar, 2012).

Production data analysis using analytical, semi-analytical and
empirical approaches is commonly applied to shale and tight for-
mations. However, numerical methods are superior to such
methods as more physics can be involved for better understanding
of the flow in porous media (Lee and Sidle, 2010; Kalantari Dahaghi
et al., 2012). The details of numerical models depend on the pur-
pose of study, and also the availability and complexity of the data to
be integrated. Some models, i.e. integrated earth models (Fanchi,
2000, 2002), reflect the detailed geological, geomechanical and
engineering data, whereas others are used as super-analytical
(Houz�e et al., 2011) or average models with enough complexity to
address some important aspects of reservoir performance and
uncertainty propagations. Numerical methods can be used in
sensitivity analysis and parametric studies to understand the effect
of different parameters such as fracture network properties and/or
complex nonlinear effects (e.g. multi-phase flow, non-Darcy effects,
or gas adsorption/desorption) on the performance of such reser-
voirs. Orangi et al. (2011) performed a sensitivity study using
compositional simulations of shale oil and gas condensate fractured
wells to evaluate the importance of fluid and rock properties for
reservoir performance prediction. Fan et al. (2011) used dual
porosity models to simulate the performance of vertical and hori-
zontal wells in the Eagle Ford shale and to find the relationship
between geological properties and production trends.

The use of numerical simulations for accurate predication of
reservoir behavior requires assisted history matching methods to
alter the model properties in an efficient way. Previous work on
history matching of tight/shale reservoirs is mainly based on
manual or deterministic methods to adjust the fracture networks
and properties. Examples of such approaches are documented by
Mayerhofer et al. (2006) and Cipolla et al. (2009) for the Barnett
shale, and Bazan et al. (2010) for the Eagle Ford where discrete
fracture network properties weremodified deterministically to find
the representative models. Although application of automatic
assisted history matching techniques is now a standard procedure
for many conventional reservoirs, its use for the unconventional
reservoirs has been limited (Ghods and Zhang, 2010). Gorucu and
Ertekin (2011) used Artificial Intelligence in dual porosity tight
gas simulations to provide information about stimulation strategies
and design parameters in transversely fractured horizontal wells.
Yin et al. (2011) used the Genetic Algorithm (Mitchell, 1998) to
calibrate their shale gas model by adjusting rock compaction, the
stimulated reservoir volume close to the hydraulic fracture, and
fracture properties. Kalantari Dahaghi et al. (2012) implemented
Artificial Intelligence to create a proxy model in synthetic shale gas
numerical models with complex fracture networks for fast evalu-
ation of the reservoir performance. Bhattacharya and Nikolaou
(2013) presented a statistical approach based on Principal
Component Analysis (Jolliffe, 2002) to analyze historical production
data from existing unconventional gas wells and to predict new
well production profiles. Zhang and Fassihi (2013) presented a
workflow for assisted history matching and uncertainity analysis of
a multi-stage horizontal fractured shale oil well in the Eagle Ford
reservoir using Genetic Algorithm and cluster analysis. They used
three different geomodels with different probabilities and included
the uncertainity in rock and fracture properties and also the bubble
point pressure in their black oil simulations. Enyioha and Ertekin
(2014) applied the Artificial Neural Network approach to map
various well design parameters for multi-lateral wells in tight oil
formations with multi-phase flow from synthetic models. Other
history matching techniques such as the Ensemble Kalman Filter
have also been implemented by Nejadi et al. (2014) to history
match a shale oil well in Horne River Basin and to assess the un-
certainty of Discrete Fracture Network properties (e.g. fracture
density, fracture intensity, special distribution and fracture con-
ductivity) and their impacts on the production profile.

Our literature survey reveals that the focus of many numerical
studies for production analysis of unconventional tight and shale
reservoirs has been largely on the impacts of rock and fracture
uncertainties. However, for the case of multi-phase flow, the
analysis can be complicated particularly when reliable fluid data
and PVTmodels are not available. Therefore, for such cases, an extra
dimension must be added to assisted history matching problems to
include the impact of uncertainty in the fluid data on the matching
process.

In this paper, we apply an assisted history-matching approach to
a multi-fractured tight gas condensate well in the Montney For-
mation inwestern Alberta, Canada. The intent of these efforts are to
derive hydraulic fracture and reservoir properties; further, and very
importantly, we are able to derive a fluid model by matching not
just fluid rates and pressures, but also fluid composition. The
complexity of multi-phase flow in addition to very limited data,
make the problem a challenging task to analyze. The available data
include initial pressure from a DFIT (Diagnostic Fracture Injection
Test) interpretation (Barree, 2013), flowing bottomhole pressure,
surface fluid rates, and some surface fluid sample compositions.
The novelty of the current work is in the combined use of
compositional simulation with the Differential Evolution approach
(Storn and Price, 1995; Price et al., 2005) to characterize the
reservoir, hydraulic fracture and the in situ fluid composition. The
workflow allows us to perform global sensitivity analysis (Saltelli,
2002) to rank the parameter importance in terms of reservoir
production and composition data (Fig. 1). The value of data in
reducing the uncertainty in the reservoir and fluid characterization
is quantified. Although detailed multi-physics, multi-process
modeling was not the purpose of this paper; the nonlinearity and
high dimensionality of the problem made the subject case an
excellent candidate for assisted history matching using a simplified
average model.

This study provides an engineering workflow for setting up a
simplified mathematical model and presenting a calibration
method to assess the behavior of a low permeability gas condensate
system. This, however, does not impact the generality of the
approach where more information and other uncertain variables
can be plugged into the inverse problem.

2. Use of differential evolution algorithm for history
matching

History matching in reservoir engineering refers to matching
dynamic field data such as flow rates and pressures with numerical
or analytical reservoir models. This is an inverse problem and is
achieved by perturbing the parameters that can describe the sub-
ject reservoir and well through an optimization algorithm. This
process has some distinct steps, including parameterization, for-
ward modeling and inversion (Tarantola, 2005). In the parameter-
ization steps, some variables or processes that can adequately
describe the model are selected. This step is the most important
step which requires expert knowledge to analyze and select the
elements of model description according to the purpose and
availability of data. Obviously, in practical problems where the data
are frequently sparse, multi-physics parameterization is not usually
possible. Increasing the number of unknowns with limited con-
straints on each variable not only does not help enhance under-
standing of the reservoir performance, but also can unnecessarily
complicate the problem. Therefore, parameterization can be



Fig. 1. Flowchart for optimization and global sensitivity analysis used in this study.
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described as an engineering art to describe a model in a simple way
with a minimum number of parameters for a specific purpose. The
forward modeling step is basically a fluid flow reservoir simulation
step (i.e. compositional simulation in our case) using a finite dif-
ference or finite element approach. Lastly, inversion can be
described as an optimization step to mathematically perturb the
reservoir model parameters in order to minimize the misfit be-
tween the real data and the model output.

There are many optimization algorithms which can be generally
divided into two groups: gradient-based (Bard, 1974) and
population-based sampling methods (Simon, 2013). The gradient-
based methods, such as Newton Raphson (Atkinson, 1978), are
based on function derivatives and are generally fast. However, they
depend strongly on the starting point and don't have an extensive
exploration view to find the global minima or maxima (Gilman and
Ozgen, 2013). On the other hand, population-based methods are
good at finding the global extrema from random or adaptive sam-
pling of the parameter space. Contrary to gradient-based methods,
the population-based methods use a population of samples at each
iteration and can provide a set of solutions to the problem rather
than a single point, and therefore can better address the non-
uniqueness in solution for an inverse problem at a single trial.
Approaches such as Differential Evolution (Storn and Price, 1995;
Price et al., 2005), particle swarm optimization (Poli et al., 2007),
ant colony optimization (Hajizadeh et al., 2009a) and sequential
Bayesian Optimization (Jones et al., 1998; Jones, 2001; Hamdi et al.,
2014) are some examples of the population-based optimization
algorithm. In this paper, we use Differential Evolution in search of
global solutions to describe a high dimensional engineering prob-
lem. Some of previous work of using DE in the history-matching
problems include that of Decker and Mauldon (2006) for esti-
mating fracture size and shape from trace data, Hajizadeh et al.
(2009b) for history matching of an oil reservoir model,
Mirzabozorg et al. (2013) for parameter estimation of a Steam
Assisted Gravity Drainage (SAGD) model and that of Awotunde and
Mutasiem (2014) for drilling time optimization.

Differential Evolution (DE) is a powerful population-based
adaptive sampling approach to find the global extrema of a black
box nonlinear model (Storn and Price, 1995; Price et al., 2005). This
can be seen as an improved version of the well-known genetic al-
gorithm (Mitchell, 1998) with a more involved mutation step and
better exploration-exploitation of the parameter space (Epitropakis
et al., 2008). There are many variants of DE. A basic variant of Dif-
ferential Evolution (DE/BEST) starts with the evaluation of an initial
population (with Np members) from the parameter space (nd-
dimensional). Each member of the population is a vector randomly
sampled from the parameter space that has honored the predefined
parameter ranges. The positions of the population members are
then ranked according to their misfit with real data. For each target
vector x, the current best member (ybest), with a lowest misfit
f(ybest), and two other randomly selected distinct members (y2 and
y3), aremutated and create a newmutantmember (vGþ1) as follows:

vGþ1 ¼ ybest;G þ F
�
y2; G � y3;G

�
(1)

where, subscript “G” is the current population or generation. “F” is
called the step size or the scaling factor and is a real positive con-
stant parameter (F � 2) that controls the rate with which the
population evolves. The mutant member v is then compared with
the vector member x (each element of vector x is shown by xi). The
mutant vector v and the member vector x in the population are
then crossed over according to a preselected crossover probability
constant (CR � 1) to generate a new vector y. This is based on
choosing a random number z between 1 and nd (the dimension of
the problem), and a random vector r with size of nd. Each member
of r is a random number ri that is uniformly distributed between
0 and 1. The potential positions of the new vector y ¼ [y1, …,yi,
…,ynd] are computed with the following logic: if ri < CR or i¼ R (R is
a random index between 1 and nd) then yi ¼ vi otherwise yi ¼ xi. If
f(y)< f(x) then the target vector in the population (i.e. x) is replaced
with the newly generated member (y) and a new population is
created. This new population is called a generation and/or iteration.

This process is repeated until the maximum number of gener-
ations is reached. The choices of CR and F have the greatest impact
on the convergence of the problem. However, according to the
authors' experience with DE a CR ¼ 0.5 and F ¼ 0.5 can usually
provide a good convergence rate in many reservoir engineering and
well testing applications (Hamdi et al., 2015).
3. Study well description

The well analyzed in this study is completed in a tight gas
condensate reservoir within the Montney Formation. The lower
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Triassic Montney Formation, which is located in the Western Ca-
nadian Sedimentary Basin, hosts vast gas and oil resources within
conventional and unconventional reservoirs (Zonneveld et al.,
2011). The focus of the current study is in an area just west of the
city of Fort St. Johnwhere theMontney is comprisedmainly of shale
and siltstone (Rokosh et al., 2012).

Fig. 2 from National Energy Board (2013) provides an areal map
illustrating the various rock types in the Montney Formation. The
expected fluid type distribution within the Montney in British
Columbia is also shown in Fig. 3 (Adams, 2013). Liquids rich gas
resources are expected in the northeastern portions of this mapped
area, while dry gas is expected towards the southwest.

The subject well in this study is a lowerMontney horizontal well
that is 1520 m in length and is completed with 8 fracture stages at
an average depth of 1984.2 m KB TVD (bottom toe perforation
depth is 1974.8 m KB TVD and top heel perforation depth is
1993.6 m KB TVD). Production commenced in December 2012. The
initial reservoir pressure was 4850 psi in December 2012, as
determined from DFIT analysis. The flowing bottomhole pressure
varied from near 4350 psi to 430 psi after around one year of
production (Fig. 4A) and is approximately constant in the late times.
Fig. 2. Areal map of the Montney Formation in subsurface of Alberta and British C
The flowing bottomhole pressure data was estimated from the
surface measurements (Beggs and Brill, 1973) and provided to us
from the operator company. It was confirmed with the operator
that the subject well was not suffering from any liquid loading ef-
fects during this production period. The condensate gas ratio (CGR)
decreased over time from around 35 barrels per million standard
cubic feet (bbl/MMscft) to a constant value of 4 bbl/MMscf (Fig. 4B).
This observation is consistent with Whitson and Sunjerga (2012)
who observed that a constant condensate gas ratio may be
observed in some saturated LRS gas condensate reservoirs when
the condensate mobility is limited within the reservoir. Later
Behmanesh et al. (2014, 2015) analytically proved that CGR is also
constant for the constant flowing bottomhole pressure cases even if
the condensate is mobile within the reservoir. Although the CGR is
low for the subject well, there are still some concerns that the well
might exhibit retrograde behavior in the reservoir which could
negatively impact production. Therefore, during the well produc-
tion period, some separator gas and condensate samples were
taken for fluid analysis. Late-time fluid samples are considered to
be more reliable than early-time samples. Therefore, one of the
main purposes of this study is to tune an equation of state (EOS) for
olombia with locations of different rock types (National Energy Board, 2013).



Fig. 3. The expected fluid distribution of the Montney Formation in British Columbia
(Adams, 2013).
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the in situ fluid in order to produce the same fluid compositions at a
selected production time (100 days), when reliable stable samples
were available. Table 1 provides the separator fluid compositions
after 100 days of the production. This fluid cannot reliably repre-
sent the original fluid in the reservoir as compositional changes
have probably occurred during production that must be verified by
the compositional reservoir simulator. It should be noted that,
contrary to the conventional tuning of an EOS from PVT analysis
software, for liquid-rich unconventional reservoirs, the in situ
reservoir fluid tuning by production data is affected by reservoir
parameters such as permeability, adding to the uncertainty. Hence,
a well history matching exercise with a reduced number of
descriptive input parameters was intended to perform the
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Fig. 4. Flowing bottomhole pressure and the
parameter estimation for this highly nonlinear system.

4. Simulation model set-up

In this study, we have setup our numerical simulations to model
transient linear flow to the hydraulic fractures. Evidence for the
appearance of transient linear flow is provided in Fig. 5, where the
normalized rate integral for the gas phase and its corresponding log
derivative are plotted vs material balance time (Palacio and
Blasingame, 1993). The plot exhibits a �½ slope indicative of
transient linear flow for almost entire production period of thewell.

Because we were only seeing linear flow (before fracture inter-
ference), and there was no evidence of other geological heteroge-
neities (such as faults or complex fracture distributions) affecting
the rate-transient behavior, it was not possible for us at this stage to
use more complex models without other supporting data. For nu-
merical simulations we therefore created a one-dimensional (1D)
single-fracture model, with a stimulated reservoir volume (SRV)
surrounding it, to reproduce the transient linear flow signature
observed in Fig. 5. The SRV is composed of a distribution of small-
scale fractures resulting in an improved permeability region close
to the primary fractures. The SRV permeability is a combination of
the matrix and fracture permeabilities (Fisher et al., 2004;
Mayerhofer et al., 2010; Mattar et al., 2011; Detring and Williams-
Stroud, 2013). The SRV is frequently employed in engineering ap-
plications by defining few composite regions around the main hy-
draulic fracture to match the measured production data using
analytical models (Stalgorova and Mattar, 2012a, b). The existence
of this region near hydraulically fracturedwells can be proved using
themicroseismic data (Albright and Pearson,1982;Warpinski et al.,
2004) and some recent studies, such as Maxwell et al. (2002, 2009),
have attempted to characterize complex fracture geometry using
such data. However, because of a lack of direct indicators, detailed
knowledge of fracture network and spacing in the SRV is not
possible. In this study, microseismic data were not available, and
hence an inverse approach was used to find the SRV boundaries for
this 1D problem.

Well performance was simulated using the CMG-GEM™
compositional reservoir simulator (CMG, 2014). Assuming sym-
metric and similar fracture stages, the overall production rates of
the well were divided by 16 to simulate the flow towards one side
of a single fracture face (Fig. 6). One dimensional (1D) reservoir grid
cells in the y-direction were logarithmically propagated to accu-
rately capture changes of pressure and saturation near the fracture
face. Other simplifying assumptions in this study are summarized
in Table 2.

Al Ghamdi and Ayala (2010) studied the effect of capillary
pressure and relative permeability data on the performance of
naturally fractured gas condensate reservoirs, and showed that the
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Table 1
Separator oil and gas compositions for a fluid sample taken after 100 days of
production.

Components Separator liquid
mole fraction, xi

Separator gas
mole fraction, yi

N2 nil 0.0011
CO2 0.0003 0.002
C1 0.0552 0.8516
C2 0.0298 0.086
C3 0.0367 0.0305
iC4 0.0212 0.0073
nC4 0.044 0.01
iC5 0.0454 0.0039
nC5 0.0461 0.003
nC6 0.1253 0.0028
C7þ 0.596 0.0018

Table 2
The assumptions used for modeling linear flow towards the equivalent 1D
fracture system.

Property Value

Porosity, 4 0.05
Fracture Conductivity, kf � w 50 md ft
Reservoir thickness, h 328 ft
Fracture half-lengtha, xf 158.5 ft
Lateral-lengthb, l 5000 ft
Capillary pressure No
Non Darcy flow No
Sorption No
Flow regimes Pure linear flow

a The combined effect of xf
ffiffiffiffi
K

p
was simulated only through permeability

variation and a constant xf.
b To simulate pure transient linear flow.
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capillary pressure curves do not have a significant effect on the
overall recovery compared relative permeability. Capillary effects
are ignored in this study; however we note that the impact of
water-gas capillary pressure on the after-injection induced fluid
distribution is somewhat compromised by using an explicit initial
fluid distribution in the model as explained in later sections. Non-
Darcy flow due to slippage (Klinkenberg, 1941) in the matrix, and
inertia (Forchheimer, 1901) in the hydraulic fractures were not
considered at this stage of study.

Detailed geomechanical data were also not available for this
study. However, because of the importance of geomechanical data,
a simplified exponential fracture compaction model was imple-
mented to modify the fracture transmissibility with changes in
pressure.

As noted by Cipolla et al. (2010), gas desorption (Langmuir,1916)
Fig. 6. A symmetrical multi-stage fractured horizontal well. The shaded are
can account for 5e15% of ultimate gas recovery, but has little impact
on early production data. Hence, desorption effect was ignored in
this study.

4.1. Parameters adjusted in simulation history-match

Twenty parameters were selected to represent the uncertainty
in water saturation, rock, and fluid properties and are listed in
Table 3. Ranges of parameters were developed through consulta-
tion with experts within the data provider company, an available
database of similar wells in the subject field, and also by consid-
ering oil-gas recombination of the separator fluid at various CGR's.

4.1.1. Initialization

4.1.1.1. Water and rock. The simulation model was initialized using
different initial water saturation profiles and permeability values.
There is a considerable amount of water production (see Fig. 8D)
since the start of production, which has a different salinity from the
injected frac water. This might be indicative of initial mobile water
in the system. A detailed numerical study of water injection and
flow in shale reservoirs was performed by Jurus et al. (2013). Un-
fortunately, in this study, water injection data were not available to
perform an analogous study. Therefore it was decided to explicitly
initialize the reservoir model with a simplifiedmobile water profile
as an uncertain parameter. A two-region (fracture and matrix)
saturation profile was used to mimic the average water saturation
within the SRV (Sw_SRV) and the lower average water saturation in
thematrix reservoir volume (Sw_init). Therefore, we assume that the
fractured region has an effective restricted volume around the
hydraulic fracture with a high average volumetric water saturation
due to water injection during hydraulic fracturing.

Permeability of the SRV and reservoir (matrix) rockwere used as
two separate matching parameters. The lateral extent of the SRV
region is estimated from the overall remaining water in the reser-
voir after injection (Qw_r ¼ Volume of injected Water - Volume of
producedwater¼ 2245 bbl or 12,606 ft3), which is given as follows:
a is used to effectively model the behavior of an equivalent 1D fracture.



Table 3
Parameters adjusted for history-matching.
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L ¼ Qwr

2xf h4ðSwSRV � Swinit Þ
(2)

where L is the width of the SRV. Therefore, by assuming a different
initial water saturation profile for the reservoir model in each
simulation run, the lateral extent of the SRV is also adjusted.

4.1.1.2. Fluid. The initial in situ gas condensate fluid composition
was considered as an unknown parameter vector for history-
matching.

4.1.2. PVT
The Peng Robinson equation-of-state (PR EOS) was selected for

use in compositional simulations. The Specific Gravity (SG) and
Molecular Weight (MW) of C7þ were considered to be unknown
parameters. These two parameters are used to estimate the other
related properties using some well-known correlations in com-
mercial fluid characterization packages. Specifically, Boiling Point
Temperature (Tb) was obtained from Søreide (1989), Critical Pres-
sure (Pc), Critical Temperature (Tc), and Critical Volume (Vc) from
Riazi and Daubert (1980), Acentric Factor (AC) from Edmister
(1958), and Parachor values from Katz and Saltman (1939). The
high uncertainty in measured properties of C7þ was the main
reason for selecting a general correlation with some ranges of MW
and SG rather than selecting all individual properties as separate
history-matching parameters. This simplification can help reduce
the dimensionality of the problem.

4.1.3. Relative permeability data
Corey's equation (Corey, 1954) was used to generate the 3-

phase relative permeability data. The Corey exponents were
used as another set of the history-matching parameters to adjust
the shape of the relative permeability curves. All initial satura-
tions and end point values were defaulted (e.g. the initial and
residual saturations ¼ 0.15) as documented in CMG-GEM™ (CMG,
2014). In other words, the endpoint saturations and the endpoint
relative permeability data were fixed, and the history-matching
was performed by adjusting the Corey exponents. Obviously,
including these endpoint variables in the parameter spaces not
only can result in different solutions but can also unnecessarily
hinder the convergence due to increase of dimensionality (Keogh
and Mueen, 2010). The extra parameters can be added later if the
convergence allows the inclusion of extra variables or whenever
some measured data became available. Nevertheless, at this
stage, it is important to note that any solution to a history-
matching (or optimization) problem is non-unique. The non-
uniqueness in solution is an inherent characteristic of any in-
verse problem. However, we attempt to incorporate all available
data into a unified template to reduce the uncertainty in
modeling and subsequently reduce the non-uniqueness in
solution.

4.1.4. Fracture permeability reduction
Rigorous modeling of geomechanics requires a coupled

approach to include the stress-strain solutions into reservoir
simulation (Heffer et al., 1992; Settari and Mourits, 1998). This
approach, however, is computationally expensive and is not the
purpose of this study. In this paper, we assumed that the proppant
was mainly confined to the main fracture, whereas the fracture
network within the SRV is unpropped. This in turn, results in a high
fracture conductivity. To simulate the effect of geomechanics on the
propped fracture, a simplified equation was used to mimic the
hydraulic fracture permeability reduction as a function of pressure
(Yilmaz et al., 1991; Yu and Sepehrnoori, 2014), i.e.:

kf ¼ kiexpðgðp� piÞÞ (3)

in which, “kf“ and “ki“ are the current and the original fracture
permeabilities at “p” and “pi” with pi being the initial reservoir
pressure, and “g” is the reduction factor. Using pressure depen-
dent permeability instead of full geomechanical was suggested



Fig. 7. Whisker-and-box-plots of misfit values as a function of generation in DE/BEST1. The total (A) and individual misfits for pressure (B), oil (C), gas (D) and water (E) rates, and
total separator fluid (oil and gas) compositions (F) reduces with time (or generation). The boxes are interquartile range, the whiskers indicate the sample ranges within 3/2
interquartile from the box edges, and black and grey dots represent the outlier samples.
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by Dinh et al. (2014) to be a good approximation for hard
competent linear elastic rocks that are found in this field. The
ranges of g are selected to account for drastic and negligible
reduction of fracture conductivity (i.e. fracture permeability
times fracture width or kf �w) with production. The lowest value
of 1E-6 corresponds to almost no permeability changes with
pressure and a very large value of 0.01 mimics a sudden facture
closure. Although in this simplified equation the change in stress
is assumed to be modeled with change in pressure, which is not
strictly rigorous, its simplicity and computational efficacy is ad-
vantageous. Modeling the reservoir deformation due to
compaction/dilation (Batycky et al., 2007) was not considered in
this modeling study.
5. Inversion

5.1. Differential evolution

The Differential Evolution with DE/BEST strategy is employed.
An initial population of 50 members with random parameters
(within the ranges) is generated. The scaling factor and crossover
ratio are both set to 0.5. Differential Evolution runs over 40
generations with a total of 2000 simulation runs. The DE algo-
rithm is re-runwith exactly the same setting parameters and with
a different random initial population to verify the existence of
other possible solutions. The objective function is defined as the
summation of the weighted normalized (with respect to the
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average value of the observed data) squared difference of the real
production (subscript “obs”) and simulation data (subscript
“sim”) (Juell and Whitson, 2013):

Total Missfit ¼
XT
t¼1

 
qo obs � qo sim

qo obs

!2

þ
XT
t¼1

 
qg obs � qg sim

qg obs

!2

þ
XT
t¼1

 
qw obs � qw sim

qw obs

!2

þ
XT
t¼1

 
pobs � psim

pobs

!2

þ 10�
XC
c¼1

 
dobs � dsim

dobs

!2

o;g

(4)

where, “C” is twice the number of available components at the
surface sample, “T” is the last timestep, “q” is the surface
production rate, and the subscripts “o”, “w”, and “g” indicate oil,
water and gas phases. The bar sign “” shows the arithmetic average
value. For the first 44 days, we produce with a gas production
constraint, and the total misfit includes the oil and water rate and
flowing pressure misfits. For the remaining timesteps, the simula-
tion is switched to the flowing bottomhole pressure constraint, and
the total misfit is now the summation of oil, water and gas rates and
composition (d) misfits. The composition misfit is calculated at a
certain timestep where the reliable measured composition is
available (at day 100). The composition misfit is comprised of the
total misfits of both oil and gas compositions at the separator. A
weight factor of 10 has been used for the composition misfit to
ensure that its value is of the same order of magnitude as the other
misfit values. This factor was pre-determined before running the
DE algorithm based on comparing the misfit values obtained
from some initial flow simulation runs designed by a quasi-random
sequence sampling experiment. The last term could also be



Table 4
The best case solution vectors obtained from two separate runs of differential
evolution DE/BEST with different initial population.

Parameters DE1/BEST
(simulation 1761)

DE2/BEST
(simulation 1289)

X1 0.287 0.351
X2 0.437 0.498
X3 0.00022 0.00040
X4 4.434 0.562
X5 109.299 129.530
X6 0.848 0.788
X7 2.003 3.884
X8 3.114 3.227
X9 3.876 3.995
X10 2.000 3.760
X11 0.881 0.895
X12 0.066 0.067
X13 0.043 0.043
X14 0.009 0.008
X15 0.013 0.014
X16 0.005 0.005
X17 0.004 0.004
X18 0.005 0.004
X19 0.021 0.016
X20 7.95E-04 2.00E-06
Total Misfit 45.60 54.58
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expanded as follows

XC
c¼1

 
dobs � dsim

dobs

!2

o;g

¼
 
mC1�obs �mC1�sim

mC1�obs

!2

o

þ
 
mC2�obs �mC2�obs

mC2�obs

!2

o

þ…

þ
 
mC1�obs �mC1�sim

mC1�obs

!2

g

þ
 
mC2�obs �mC2�obs

mC2�obs

!2

g

þ… (5)

in which, “m” is the molar fraction, C1 is Methane and C2 is Ethane.
One problemwith such a common definition of total misfit (as a

weighted summation of all misfits) is that, although the total misfit
may eventually converge, the process cannot guarantee the indi-
vidual misfits to also converge simultaneously. However, as we will
see in our results, this issue is not important for our problem as
there is no strong conflict between the individual misfit values.
Therefore, while the total misfit reduces, the individual misfits
also reduce in later generations. Otherwise, the multi-objective
optimization procedure might be an alternate choice (Coello
Coello et al., 2007; Mezura-Montes et al., 2008).
5.2. Convergence

Fig. 7A through F show the whisker-and-box-plots (Weisstein,
2014) of total and individual misfits from DE progress with gener-
ation. The boxplot is a visual representation of data statistics. Each
box represent Q1¼25% (the lower edge), Q2¼ 50% (themiddle line)
and Q3 ¼ 75% (the upper edge) quartiles. The extended whiskers
represent the range within 3/2 times the interquartile range Q3-Q1.
The black and grey dots above each box denote the outliers. The
Fig. (7A through F) show that the acceptable convergences are
attained for all misfits after around generation 30 (with a corre-
sponding member or simulation case 1500). Because of the
importance of oil rate matching (as it is the fluid that company
starts to sell since the start of production), selection of the simu-
lation cases with minimum total misfits were not of primary in-
terest because it was associated with a relatively higher oil misfit.
Hence, the resulting misfit data from DE were ordered based on
ascending oil rate misfit, and the cases with lower global misfit
were probed to check the quality of match in all individual rates
and composition curves. Hence, simulation case 1761 (DE1/BEST)
was selected as a case with acceptably reduced total and individual
misfits for the first try of running the Differential Evolution algo-
rithm (DE1). Table 4 summarizes two sets of parameter vectors as
outcomes of performing the optimization algorithm from two
distinct Differential Evolution trials with the same seteup param-
eters. One interesting point is that the geomechanical effect (X20)
appears to be minimal particularly for the second Differential
Evolution run (DE2). Almost similar values for water saturations
(X1 and X2) were obtained in both runs. DE2was only performed to
show the non-uniqueness of the solution where different random
initial population can lead to different solution vectors. The com-
bination of both DE resultant samples can provide invaluable in-
formation to explore and analyze the performance of our model in
terms of parameter interactions and their global effects on the
production data.

Fig. 8A through F, represent the history-match results of DE1's
best solution. Fig. 8A through F, represent the history-match results
of DE1's best solution. As Fig. 8 shows, a good match has been
obtained which can approximately represent the available data.
There is an apparent early mismatch in the oil production data
which could not be furthered improved in this study. However, this
is likely due to the existence of high uncertainty in the noisy
measurement data in the early times. The corresponding solution
of DE2 (i.e. simulation case 1289) can produce the same quality of
matches of the data as DE1, but is not shown here.

The estimated fluid composition for DE1's matched case (DE1/
BEST) corresponds to a lean gas condensate fluid with a maximum
oil saturation of 1.5% from the CCE test and has a dew point pres-
sure of 2708 psi at reservoir temperature of 162 �F. On the other
hand, the saturation pressure of DE2/BEST is 2585.5 psi with a
maximum liquid saturation of 1.3% from CCE test.
6. Sensitivity analysis

The purpose of the sensitivity analysis is to investigate which
parameters cause more output uncertainty and to quantify the
confidence on the solution parameters. Differential Evolution cre-
ates a pool of samples, which have adapted or evolved from an
initial random generation towards some solutions with minimal
misfits. Using the DE/BEST scheme conveys that the final accepted
solution was mainly inherited from a best member somewhere in
the generation and therefore, the process doesn't guarantee to find
all available solutions. To have a better understanding of the model
inputeoutput relationships, global sensitivity methods can be used
to provide a wider perspective on the performance and sensitivity
of the misfits to the model parameters within the entire range of
the allowable inputs (Tong and Graziani, 2008). Total sensitivity
indices can take into account the interactions between parameters
in the sensitivity calculations. In this study, we use the total order
Sobol' indices (STi) that are based on the decomposition of variance
and indicate the contribution of each parameter (X) to the total
output (Y) variance, where parameter interactions are also included
(Sobol', 1967; Saltelli, 2002; Schwieger, 2006). This can be formu-
lated as STi ¼ E(V(YjX~i))/V(Y), where the subscript ~ i represents all
input variables except Xi, and E and V are the expected value and
the variance. The calculation methods are based on partial variance
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Fig. 9. The k-fold cross validation. The proxy model is constructed for each fold (or subset) from the training samples and is used to predict the output of the test sample.

Table 5
The training (fitting) and cross validation errors associated with MARS to model oil
and gas rates, and composition misfits.

Error Oil misfit Gas misfit Composition misfit

Training CV Training CV Training CV

Average error 0.126 0.169 0.038 0.050 0.000 0.000
RMS error 0.890 1.147 0.593 0.674 0.018 0.020
MAX error 8.335 13.920 10.010 14.240 0.117 0.119
R-square 0.989 0.998 0.998

Fig. 10. The training (fitting) and cross validation errors associated with MARS to model oil and gas rates, and composition misfits.

Fig. 11. The smooth histogram of individual log misfits. The total composition misfit has a narrower variation range.
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integral calculations by numerical methods (Tong, 2013). The
sensitivity indices require rigorous sampling and function evalua-
tions, which make the process computationally costly. Therefore,
the response surface models or RSM's (also known as Meta models
or proxies) are favorable to approximate the response function (i.e.
the objective function misfit values) in a faster way. Finding a
validated response surface is not a simple task and requires
considerable effort and time to find the reliable settings. However,
our numerical experiences in production and well test history-
matching and uncertainty quantification demonstrated that the
Multivariate Adaptive Regression Splines or MARS (Friedman,1991)
can be a rather good response surface for our application. TheMARS
model is a nonparametric approach to model the nonlinearity and
interactions between the variables in high dimensional spaces
(Friedman, 1991) without considering any assumption for the
model inputeoutput functional relationships. MARS has proven to
be a robust response surface model in various engineering appli-
cations (Leathwick et al., 2005; Balshi et al., 2009; Zhan et al., 2013;
Hamdi et al., 2014). MARS divides the input parameter space into
some sub-regions using some knot points and uses different



Fig. 12. Total order Sobol' sensitivity indices used to rank the importance of the input
descriptive model parameters for oil (A), gas (B) and total composition (C) misfits.
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regression equations within each subset to model the
inputeoutput relationships. The MARS regression function is a
linear combination of many basis functions, and each basis function
is a truncated power spline and includes a degree of interactions
between the parameters (Sakamoto, 2007). The detail of MARS
regression function is documented in Friedman (1991).

The MARS model is constructed based on the available pool of
data created from Differential Evolution. However, as mentioned
earlier for adaptive sampling, as in DE, it may not adequately cover
the parameter space, and the samples might only represent a
portion of the space with a higher density in the solution areas. An
additional space-filling sample design can improve the quality of
the RSM. A quasi-random sequence sampling method has shown to
be an appropriate design for the global sensitivity analysis partic-
ularly, when the numerical integration should be evaluated (Sobol',
1967). Hence, in this study, an additional 1000 samples from our
20-dimensional parameter space are generated and the outputs (or
misfits) are evaluated directly from the simulation runs. These
samples are added to the already generated pool of samples from
two separate Differential Evolution runs with 4000 samples. Still,
the constructed MARS model from these 5000 samples should be
validated to ensure the productivity of the RSM. K-fold cross vali-
dation is a common statistical approach which splits the training
samples into k subsets of equal size (Geisser, 1993). For each subset,
one sample is left out (i.e. the test sample), and the model is con-
structed for the remaining samples to calculate the error associated
with the prediction of test sample output (Fig. 9). This process is a
time-consuming and must be repeated for all k folds.

In this study, we use the number of subsets k ¼ 500, which
roughly takes 30 h to complete for each misfit (i.e. composition, oil,
water and gas misfits). For the purpose of this study, a MARS model
with 300 basis function and 20 interaction levels between the input
variables provided a reasonable fit to the training data to reproduce
themodel output (i.e. themisfits associatedwith hydrocarbon rates
and total separator compositions). Many other types of response
surfaces such as k-nearest neighbors (Kuhn and Johnson, 2013),
radial basis functions (Kuhn and Johnson, 2013) and kriging
response surfaces (Rasmussen andWilliams, 2005) were also tried.
However, only the MARS model could reproduce the lower errors
within a considerably smaller time frame. Table 5 summarizes the
quality of the MARS model in terms of training (fitting) and cross
validation errors. The prediction ability of this MARS model from
500-fold cross validation is also shown in Fig.10. Clearly, the quality
of modeling for total separator composition is better than the ones
for the oil and gas rates misfits as the data are more aligned on the
45� diagonal line (i.e. MARSmodel could better predict the hold out
samples). This might reflect the different nature of themisfit values.
The misfit data for the rates are averaged over all timesteps, which
showed higher variation ranges than the composition misfit that is
averaged over the components in a single timestep (Fig. 11).
Therefore, the rate misfits can carry a higher variation level and
therefore are more difficult to represent with a proxy model.
Considering the computational time, here we only consider the
sensitivity analysis for the hydrocarbon rates, and total composition
misfits. Obviously, the same set of analysis can also be performed
on the water rate misfit.

The total order Sobol' indices are quantified by drawing and
evaluating 100,000 sample points from the validatedMARS RSM by
assuming the uniform distribution over the input parameters. The
calculated Sobol' indices are averaged over 500 bootstrap runs. This
process takes around 48 h to complete for eachmisfit. Fig. 12 shows
the calculated average bootstrap Sobol' indices for total composi-
tion, oil, gas and water misfits. The pads with green circles on each
bar indicate the standard deviations associated with sensitivity
indices over 500 repeated trails. A quick look at the Fig. (12A
through C) reveals that as the quality of RSM for predicting the
total composition is better, the standard deviations associated with
total sensitivity indices are lower. The sensitivity indices are used to
rank the important parameters that convey greater information for
the model output. Moreover, they can show the uncertainty in each
parameter. In this sense, the parameters with lower total sensitivity
indices have higher uncertainties. In other words, because the
output is less sensitive to an input parameter, the estimated
parameter conveys less information about the output. Fig. 12A
shows that the fracture permeability reduction factor or geo-
mechanical effects (X20), reservoir permeability (X3), in situ SG of
C7þ(X6), and movable initial water saturations in the SRV and
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reservoir rock (X2 and X1) have higher impacts on the oil rate
misfits. Whereas, geomechanical effects (X20) and reservoir
permeability (X3) have dominant impacts on the gas misfits
(Fig. 12B). Sobol' indices for the total composition misfit reveal that
the in situ compositions of i-C4 (X14), C3 (X13), n-C5 (X17) and C7þ
(X19) compete for altering the total composition output (Fig. 12C).
7. Conclusions

In this work, we successfully implemented the Differential
Evolution (DE) algorithm to history-match fluid production and
separator composition data for a liquid-rich, tight gas condensate
well in the Montney Formation. The results help characterize a
consistent 1D linear model, including a hydraulic fracture with a
surrounding SRV, and to construct a reliable in situ gas condensate
fluid model. The history-matched results can satisfactorily repro-
duce the water and hydrocarbon surface flow rates, flowing bot-
tomhole pressure, and separator fluid compositions. The surface
samples were very important to reduce the uncertainty in the
number of components and their variation ranges in the equation
of state (PR EOS) used to model fluid. The best solution obtained
from the DE optimization algorithm led to a lean gas condensate
fluid with around 1.5% of liquid dropout from the CCE test.

One advantage of using the DE algorithm is that it provides a
pool of samples, and a set of solutions, that can be further used to
statistically evaluate the performance of our model in terms of
global sensitivity analysis. The total order Sobol' indices were
calculated to rank the importance of parameters. For example, the
fracture permeability reduction factorwith pressure and thematrix
permeability were found to have the largest impact on the uncer-
tainty of both hydrocarbon rates, while they have minimal effects
on the total separator composition. The permeability of the SRV, the
initial water distributions, and SG of C7þ were the other important
factors controlling oil rate.

It is important to note that the DE results still remain non-
unique solutions to a nonlinear inverse problem. Nevertheless,
the importance of this work is that it describes a workflow that
integrates the available data and enables the uncertainty in the
fluid behavior and reservoir model to be addressed in an efficient
way. The approach we followed in this paper was to downgrade the
production data analysis of a multi-physics problem by employing
some simplifying assumptions, such as: 1) using an equivalent 1D
linear model 2) a simple fracture permeability reduction model
with pressure rather than a comprehensive geomechanical model,
and 3) a stepwise movable initial water saturation profile, and 4)
ignoring sorption effects and non-Darcy flow. However, once again,
this does not affect the generality of the approach and more details
can be added to the system depending on the purpose of the study,
and the level of complexity required.
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Glossary

AF: Acentric factor
Bar sign “”: Average value
C: Total number of components in the total composition misfit
CCE: Constant Composition Experiment
CGR: Condensate Gas Ratio
CR: Cross-over probability
DE: Differential Evolution
DFIT: Diagnostic fracture injection test
E: Expected value
f(x): Misfit value from reservoir simulation of vector x
f(y): Misfit value from reservoir simulation of vector y
F: Step size or scaling factor
�F: Degree Fahrenheit
h: Reservoir thickness, ft
kf: Current fracture permeability, md
ki: Original (initial) fracture permeability, md
KB: Kelly Bushing
l: Lateral length, ft
L: The width of the SRV in a 1D Model, ft
LRS: Liquid Rich Shale
m: Molar fraction
MARS: Multi-variate Adaptive Regression Spline
MFHW: Multi-Fractured Horizontal Well
MW: Molecular Weight
nd: The dimension of problem
Np: The number of members in an initial population of DE
p: Current pressure, psi
pi: Initial pressure, psi
Pc: Critical pressure
PR-EOS: PengeRobinson Equation of State
q: Production flow rate, bbl/Day (Liquid) or MMscf (gas)
Q1, Q2, Q3: 25%, 50% and 75% quantiles
Qw_r: Remaining water in the reservoir after injection, ft3

r: A random vector
ri: Each member of r that is a random number between 0 and 1
R: A random index between 1 and nd
RMS: Root Mean Square
RSM: Response Surface Model
STi: Total order Sobol' indices
Sw_init: Initial water saturation in the model
Sw_SRV: Initial water saturation in the SRV
SAGD: Steam Assisted Gravity Drainage
SG: Specific Gravity
SRV: Stimulated Reservoir Volume
T: Total number of timesteps
TVD: True Vertical Depth
Tb: Boiling temperature
Tc: Critical temperature
vGþ1: Mutant vector
V: Variance
Vc: Critical volume
w: Fracture width, ft
x: A target vector from current population G
xf: Fracture half length, ft
X: An uncertain input (model parameter)
y: A crossed-over and mutated vector (outcome of DE)
y2,G & y3,G: Two randomly selected distinct vectors from current population G
ybest, G: The best member of current population G with a lowest Misfit
Y: Total output (Misfit)

Subscripts

G: Generation
best: The best member of a DE population
o, g, w: Oil, gas, water
obs: Observed data
sim: Simulation data
~i: All parameters except i

Greek letters

g: Fracture reduction factor
d: Molar fraction of components in oil or gas
z: A random number between 0 and 1
4: Porosity
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