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Abstract

Reservoir history matching is a computationally expensive process, which requires multiple simulation
runs. Therefore, there is a constant quest for more efficient sampling algorithms that can provide an
ensemble of equally-good history matched models with a diverse range of predictions using fewer
simulations. We introduce a novel stochastic Gaussian Process (GP) for assisted history matching where
realizations are considered to be Gaussian random variables. The GP benefits from a small initial
population and selects the next best possible samples by maximizing the expected improvement (EI). The
maximization of EI function is computationally cheap and is performed by the Differential Evolution (DE)
algorithm. The algorithm is successfully applied to a structurally complex faulted reservoir with 12
unknown parameters, 8 production and 4 injection wells. We show that the GP algorithm with EI
maximization can significantly reduce the number of required simulations for history matching. The
ensemble is then used to estimate the posterior distributions by performing the Markov chain Monte Carlo
(McMC) using a cross-validated GP model. The hybrid workflow presents an efficient and computation-
ally-cheap mechanism for history matching and uncertainty quantification of complex reservoir models.

Introduction
In making business plans for development of oil and gas resources, having a reliable prediction of
reservoir performance is of prime importance. The history matching process aims to address this concern
where the simulation model is updated to reproduce the historical behavior of the field. The outcome of
a history matching exercise is then used to quantify the prediction uncertainty of reservoir models. History
matching is an inverse and ill-posed problem with multiple non-unique solutions. Despite the advances
that have been made during the past 55 years, the history matching has remained to be a challenging task
for reservoir engineers. The improvements in computational algorithms and resources have been masked
by moving towards billion-cell simulation models. Therefore, the total amount of time and resources
required to run several simulation models during a history matching study has remained relatively
unchanged. These challenges have kept the history matching and uncertainty quantification research a
very live topic in our community.

Three main categories of algorithms exist in the literature to tackle the history-matching problem.
These include gradient-based algorithms (Slater and Durrer (1970), Watson and Lee (1986)), population-
based approaches (genetic algorithm (Romero et al., 2000), evolution strategy (Schulze-Riegert et al.,



2001), differential evolution (Hajizadeh et al., 2009), estimation of distribution algorithms (Abdollahza-
deh et al., 2011)) and particle filter methods (Naevdal et al., 2003). The majority of assisted history
matching packages adopted by the industry are powered by stochastic population-based sampling
algorithms.

Population-based algorithms are favorable because they produce an ensemble of history-matched
models that can be used during the uncertainty quantification stage. Tavasolli et al. (2004) showed that
prediction of the future performance of a reservoir based on a single best history matched model may not
be reliable. Population-based algorithms also offer more robustness in dealing with noisy objective
function in comparison with point-based methods (Nissen and Propach, 1998). However, a requirement
to run multiple simulations has remained a major bottleneck for the application of these algorithms for
large simulation cases. Furthermore, the efficiency of the sampling algorithm is critical for production
optimization problems where the same workflow can be used to maximize an objective function value
(Ding, 2008). In this paper, we look at a particular class of population-based history matching algorithms
which takes the advantage of the modeling the simulation outputs using a multi-Gaussian distributions.
Such an assumption guides the selection of better samples as the history matching iterations advance. We
first describe the Gaussian Process (GP) as an efficient surrogate, and then discuss its application for
history matching of a medium sized faulted reservoir.

Gaussian Process
A Gaussian Process (Rasmussen and Williams, 2005) is used to model a desired system output y(xi) and
assumes that it follows a multi-Gaussian distribution with a mean ��k(xi, xo)k(xo,xo)�1 yo and a variance
�2 � k(xi, xi)- k(xi, xo) k(xo, xo)�1 k(xo, xi). With such an assumption, we are able to set a mathematical
framework to estimate the unknown function at a new location (xi). In this process, (xo, yo) is a set of
observed input and output data, and k(.) is an arbitrary kernel or covariance function (Azimi et al., 2012).
If we assume a Gaussian covariance function – i.e. k(xj, xi)�exp(||xi-xj||/�) – to describe the observed data
relationships, the optimal values of the GP’s mean and variance are obtained from maximization of
exponential likelihood function (� is the characteristic length scale vector which describes the variability
of each input parameter). When the optimal mean and variance are known, the value of function at a new
sample location (xi) can be estimated. Jones (2011) showed that for such conditions the optimum function
value, that maximizes the likelihood function is the ordinary kriging predictor with a variance of
SD

2(xi).

Maximum expected Improvement (MEI)
The expected improvement, EI is a measurement of the anticipated enhancement one expects by sampling
from a new location. Assuming y(xi)�ymax-I, where I is the improvement and ymax the current best value
of function, then the EI is defined as the following (Jones, 2001):

1

In which, , P(u) and �(u) the Gaussian cumulative distribution and density functions,

respectively. The maximum expected improvement seeks to maximize the improvement we get if we
sample from a new location xi. For maximizing the EI, we use the DE/Best variant of the Differential
Evolution (DE) algorithm which is an efficient population-based optimization technique (Storn and Price,
1995; Hamdi et al., 2015). Although, DE requires a large number of function evaluations, this would not
create any problem for maximizing the EI as this analytical function is very cheap to evaluate. Such a
procedure results in proposing a new sample location xi that can potentially have a lower misfit value. The
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proposed sample is passed to the reservoir simulator and the actual misfit value is evaluated. Using this
procedure, more and more samples are sequentially added until we touch the minimum misfit threshold,
or have reached the maximum number of simulation runs assigned to the algorithm. The success rate of
the algorithm relies on the quality of the GP model to efficiently emulate the simulator’s output (misfit
values). As such, it is essential to generate an initial population of models to act as the starting data (xo,
yo) and the next samples are then sequentially added to this initial set. The overall performance of GP is
assessed by introducing the regret function rather than the actual misfit value and is defined as yopt-ymax,
where yopt is the optimal value of function (i.e. zero) and ymax is the current best value of the evaluated
function. Figure 1 shows the overall workflow for GP optimization and uncertainty quantification that is
introduced in this work.

Description of the Reservoir Model
The reservoir model used in this study is a faulted fluvial reservoir model. The model consists of 25600
cells (40�40�16). Each cell has a dimension of 350ft�350ft�7.5ft. We consider a two-phase flow of
water and oil in the reservoir with no gas being present. CMG-IMEX™ black oil reservoir simulator
(Computer Modelling Group, 2014) is used to simulate the fluid flow. For this model, the WOC is located
at 6555 ft. with reference depth being 5560 ft. The pressure at the reference depth is 5000 psi and the
bubble point pressure is 1000 psi. The model has 3 distinct faults and 12 wells: 4 injectors (I01, I03 to
I05) and 8 producers (P01 to P08). The injection wells are controlled on water rate and the producers with

Figure 1—An uncertainty quantification workflow using the GP modeling that is implemented in this paper
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the bottomhole pressure. Figure 2 shows a snapshot of the 3D model with the locations of the wells in the
reservoir.

The model parameters and initial ranges and their truth values for the history matching problem are
listed in Table 1. The parameters include the multipliers for the anisotropic permeability field and the
faults, the aquifer size, end-point relative permeability and the Corey’s exponents Nw and No (Corey,
1954) for generating the water and oil relative permeability curves. The combination of parameters
presented in Table 1 poses a 12-dimensional history matching problem.

Figure 2—The reservoir model that is used in this study

Table 1—History matching parameters, initial ranges and the truth model values

Parameter Min Max Truth

kx Multiplier (X1) 0.2 2 1

ky Multiplier (X2) 0.2 1.5 1

kz Multiplier (X3) 0 1.5 1

F2 Multiplier (X4) 0 1 0.5

F3 Multiplier (X5) 0 1 0

F4 Multiplier (X6) 0 1 1

Aquifer Length, ft (X7) 300 30000 20000

Aquifer Permeability, md (X8) 10 1000 500

Nw Corey’s exponent for Krw (X9) 1.5 5 2

No Corey’s exponent for Kro (X10) 1.5 5 2

Kro at Swi �0.25 (X11) 0.6 0.95 0.9

Krw at Sor �0.15 (X12) 0.1 0.6 0.5
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Results
We use a Latin Hypercube design to generate 10 initial samples from the parameter space and calculate
the corresponding misfit values. The scaled misfit (M2) between the observed (obs) and simulation (sim)
data is defined over all wells (W) and timesteps (T) as follows:

2

in which, WC is water cut, qo is the producer’s oil rate (STB/day), � is the assumed error in each
measurement, and Pinj is the injector pressure (psi). The misfit value is scaled with respect to the average
values of the observed data and assumes measurement errors of 1% for rates and 20 psia for pressures.
The constant coefficients of 5 and 10, which appear in the misfit definition, are used to ensure that all
individual misfit values fall within the same numeric ranges. These constants are obtained by running an
initial set of independent random samples from the parameter space and comparing the individual misfits
before running the GP algorithm. These samples are used to fit a GP model to the data to sequentially
propose the next best sample by maximizing the expected improvement. The best GP hyper-parameters
(mean, variance and the length scales) are obtained by maximizing the log-likelihood. In this problem, we
set a maximum of 350 iterations and will repeat the optimization for 4 times. The convergence is shown
based on the average performance of these independent GP runs. The performance of GP is understood
from the calculated regret values.

Figure 3 shows the convergence of the GP that is obtained by averaging the all regrets over four
individual runs. The regret has been reduced logarithmically from around 10000 to around 30 in less than
350 simulations for this problem. This shows the efficiency of the algorithm in proposing and finding the
samples with low misfit values. Table 2 lists the estimated parameters corresponding to the best model in
different GP runs.

Figure 3—Minimization of the regret function
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The corresponding history matching results of the best model obtained from Match 1 (after 285 black
oil simulation runs) are presented in Figure 4. Clearly, a reasonable match has been attained for all
dynamic outputs of the subject wells.

Table 2—Comparison of truth model values and the best four match results

Parameter Truth Match 1 Match 2 Match 3 Match 4

kx Multiplier 1.000 1.227 1.117 1.762 0.926

ky Multiplier 1.000 1.108 1.381 0.817 1.268

kz Multiplier 1.000 0.649 1.500 1.092 0.604

F2 Multiplier 0.500 0.454 0.021 0.000 0.137

F3 Multiplier 0.000 0.001 1.000 0.000 0.001

F4 Multiplier 1.000 0.511 1.000 0.864 0.330

Aquifer Length, ft 20000.000 27165.040 19549.130 27918.210 24320.680

Aquifer Permeability, md 500.000 812.587 1000.000 812.322 598.472

Nw Corey’s exponent for Krw 2.000 3.561 5.000 2.907 1.500

No Corey’s exponent for Kro 2.000 1.500 1.500 2.348 2.975

Kro at Swi �0.25 0.900 0.885 0.890 0.950 0.950

Krw at Sor �0.15 0.500 0.490 0.600 0.520 0.530
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The value of observed dynamic data in constraining the reservoir parameters is assessed by performing
a Markov chain Monte Carlo (McMC) process (Shonkwiler and Mendivil, 2009; Kruschke 2010) in which
the prior ranges and the likelihood of the sampled models is combined to estimate the posterior
distributions. The posteriors are assessed using a Bayes rule as follows:

3

in which, P(m|o) is the probability of model parameters given the observed data (a posterior) that is
proportional to P(o|m) is the likelihood and P(m) is the prior probability (a prior). The constant of
proportionality is estimated using the Gibbs sampler. The numerical methods involved in the Gibbs
sampling algorithm (Geman and Geman, 1984) requires frequent sampling and evaluation that is not
generally feasible using the actual reservoir simulations due to computational cost. Therefore, similar to
history matching algorithm, we use a validated GP proxy model to approximate the relationships between
model inputs and output.

Figure 4—Oil rate, water cut and pressure match results. The blue curves represent the truth model response and the orange curves
are the simulated data
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In this study, we combine the entire samples that we obtained in our four GP runs and create a pool
of data. This relatively large pool of 1400 samples is used to construct a GP model by optimizing the
proxy hyper-parameters (Tong, 2013). The obtained GP model is able to properly approximate the model
behavior. The quality of such an approximation is judged by performing a statistical cross validation (CV)
test. In our problem, a leave-out-one-cross-validation (LOOCV) is performed. Figure 5 shows the absolute
prediction errors and the predictively of the GP proxy. In particular, most of the errors are close to zero
(Fig. 5; left) and the data are approximately lied on a 45° diagonal line (Fig. 5; right) which indicates a
relatively good prediction ability of the proxy.

For this work, we use uniform priors defined over the possible ranges of variations as indicated in Table
1. The likelihood or P(o|m) is approximated by assuming a Gaussian likelihood. This is obtained from the
misfit values using the following relationship (Erbaş and Christie, 2007):

4

The McMC is then performed on the constructed proxy and repeated dependent samples are drawn to
directly sample from the posteriors. We performed a multi-chain McMC with 10 chains and 100,000
samples per chain (Tong, 2013). A similar number of burn-in samples are also evaluated and discarded
to ensure the process is stable and is not stuck in sampling from low probability tails. Figure 6 shows a
1D projection of the posterior probabilities and indicates how the knowledge of posterior can help
understand the value of information. The posterior probabilities are used for probabilistic prediction of the
future reservoir performance.

Figure 5—Validation of the proxy model: The cross validation error (left) and the predictivity of the GP model (right). The green bars
are the points that have the prediction and the actual values within a unit prediction error and the red bars are outside this range
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Conclusions
In this paper, we presented a new approach for history matching reservoir simulation models. A Gaussian
Process surrogate model was used to efficiently approximate the relationships between the model
parameters and the misfit values. A statistical criterion (i.e. Expected Improvement) was defined over the
GP model to detect the areas with low misfit potentials. This approach was successfully tested for a
realistic faulted fluvial reservoir model with 12 injectors and producers. The GP optimization was
repeated a number of times and each time the results showed a consistent fast convergence (�350
simulations) for history matching of this 12-dimensional problem. The GP model fitted to all samples
could provide a good predictivity with a low cross-validation error. This surrogate was implemented
through a multi-chain Gibbs sampling technique and the posterior distributions were estimated. The GP
modeling was found as a smart method that can provide promising results and an efficient and fast
optimization approach for high dimensional problems.
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