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Given a set of symmetric/antisymmetric filter vectors containing only regular multires-
olution filters, the method we present in this article can establish a balanced multiresolution
scheme for images, allowing their balanced decomposition and subsequent perfect
reconstruction without the use of any extraordinary boundary filters. We define balanced
multiresolution such that it allows balanced decomposition i.e. decomposition of a high-
resolution image into a low-resolution image and corresponding details of equal size.
Such a balanced decomposition makes on-demand reconstruction of regions of interest
efficient in both computational load and implementation aspects. We find this balanced
decomposition and perfect reconstruction based on an appropriate combination of sym-
metric/antisymmetric extensions near the image and detail boundaries. In our method,
exploiting such extensions correlates to performing sample (pixel/voxel) split operations.
Our general approach is demonstrated for some commonly used symmetric/antisymmetric
multiresolution filters. We also show the application of such a balanced multiresolution
scheme in real-time focus+context visualization.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Context

Applications that facilitate multiscale 2D and 3D image
visualization and exploration (see [17,34,28], for example)
benefit from multiresolution schemes that decompose
high-resolution images into low-resolution
approximations and corresponding details (usually, wavelet
coefficients). Several subsequent applications of such a
decomposition constructs the corresponding wavelet
transform. This wavelet transform can then be used to
derive low-resolution approximations of the entire image,
as well as high-resolution approximations of a region of
interest (ROI), on demand. Reconstructing the high-
resolution approximation of a ROI involves locating the
corresponding details from a hierarchy of details within
the wavelet transform. One such hierarchy of details result-
ing from only two levels of decomposition of an Earth
image (data source: Visible Earth, NASA) is shown in Fig. 1.

For the purpose of demonstration, we created the
wavelet transform in Fig. 1 using the short filters of quadra-
tic B-spline presented by Samavati et al. [27,28]. In practice,
images that require multiscale visualization are larger in
size and may require more levels of decomposition. For each
level of decomposition in this particular example, the image
was first decomposed heightwise and then widthwise.
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Fig. 1. Hierarchy of details in a wavelet transform resulting from two levels of decomposition of a 1024� 512 Earth image. The coarse image (at the top left
corner) contains a rectangular ROI and the details corresponding to that ROI are enclosed by rectangles within all levels of details.
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1.2. Problem

Sequences of samples along each image dimension can
be treated as finite-length signals. It is well-known that
decomposition and reconstruction of finite-length signals
require special treatments at the boundaries [1], which
often involves the use of extraordinary boundary filters.
The use of extraordinary boundary filters (as opposed to
regular filters) for handling image and detail boundaries
lead to computationally untidy reconstruction near image
boundaries.

From a hierarchy of details, such as the one in Fig. 1, if
we need to reconstruct the high-resolution approximation
of a ROI located in the low-resolution (coarse) image
shown in the top-left rectangle in Fig. 1, we have to locate
the corresponding details in some or all of the rectangles
that contain details depending on the expected level of res-
olution. Locating these details will be straightforward if
each of the heightwise and widthwise decomposition steps
decomposes an image into two halves of equal size – one
half corresponding to the coarse image and the other half
corresponding to the details. Among B-spline wavelets,
only the filters obtained from Haar wavelets provide such
a balanced decomposition [12,29]. However, because
Haar wavelets and the associated scaling functions are
not continuous, it would be beneficial to achieve such a
balanced decomposition for the filters obtained from
higher order scaling functions and their wavelets.

Existing multiresolution schemes for the local filters of
second or higher order scaling functions and their wavelets
(see [28,5,8,21], for example) result in unequal numbers of
coarse and detail samples after decomposition (i.e.
w1 – w2;w11 – w12;h1 – h2, and h11 – h12 in Fig. 1). Such
inequalities resulting from decomposition make locating
the details corresponding to a ROI for reconstruction a
cumbersome task (which involves keeping track of
level-wise offsets from boundaries), specially when an
interactive multilevel visualization hierarchy (see
Fig. 13(a), for example) is concerned. Creation of a such
an interactive visualization hierarchy requires efficient
on-demand access to details.

In contrast, balanced decompositions can construct bal-
anced wavelet transforms, such as the one shown in Fig. 2
(data source: Visible Earth, NASA). In Fig. 2, the rectangles
containing different levels of details for the entire image
are numbered with ðl;1Þ tuples for widthwise and ðl;2Þ
tuples for heightwise decompositions, where l represents
the level of resolution. Locating the details corresponding
to a ROI on demand in a balanced wavelet transform
includes a number of simple dyadic operations, which are
known to perform significantly faster than non-dyadic
operations in both hardware and software imple-
mentations. Such efficient access to details is demonstrated
by means of an example in Fig. 2. In general, if cx;y is the
coarse sample at the top-left corner of a ROI rectangle, then

dðl;1Þ
2l�1ðwcþxÞ;2l�1y

and dðl;2Þ
2lx;2l�1ðhcþyÞ

are the detail samples at the

top-left corners of the detail rectangles corresponding to
the ROI for widthwise and heightwise balanced decomposi-
tions, respectively. Here, wc � hc (w

4 � h
4 in Fig. 2) is the

resolution of the coarse image containing the ROI.

1.3. Proposed approach

In order to address the issues discussed above, in this
article, we introduce a technique for devising balanced
multiresolution schemes for the local filters of second or
higher order scaling functions and their wavelets. Our
technique uses an appropriate combination of symmet-
ric/antisymmetric extensions near the image and detail
boundaries, which correlate to sample split operations.
To guarantee a perfect (lossless) reconstruction without
the use of any extraordinary boundary filters, our method
requires each of the given decomposition and reconstruc-
tion filter vectors (kernels) to be either symmetric or
antisymmetric about their centers. Many existing sets of
local regular multiresolution filters, such as those associ-
ated with the B-spline wavelets [28], biorthogonal and



Fig. 2. A ROI in a balanced wavelet transform after two levels of balanced decompositions of a 1024 � 512 Earth image is shown. The location of the coarse
sample highlighted with a red circle at top-left corner of the ROI rectangle in the coarse image is denoted ðx; yÞ. Due to balanced decompositions, the detail
rectangles (four here) corresponding to the ROI can be found with simple dyadic operations. For example, the location of the detail sample highlighted with
a yellow circle at top-left corner of the detail rectangle corresponding to the ROI is 2lx;2l�1ðh=4þ yÞ

� �
, where the level of resolution l ¼ 2. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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reverse biorthogonal wavelets [5,8], and Meyer wavelets
[21,8], exhibit such symmetric/antisymmetric structures.

1.4. Contributions

We present a novel method to devise a balanced
multiresolution scheme for a given set of symmetric/an-
tisymmetric multiresolution filter vectors containing
regular filters. Devised balanced multiresolution schemes
allow balanced decomposition and perfect reconstruction
without the use of extraordinary boundary filters. A bal-
anced wavelet transform representation of an image
resulting from balanced decompositions provides straight-
forward and efficient access to previously extracted details
corresponding to a ROI on demand. We also provide ready-
to-use balanced multiresolution schemes devised using
our proposed method for eleven commonly used sets of
symmetric/antisymmetric multiresolution filter vectors
(see Table A.2). Additionally, we show the application of
a devised balanced multiresolution scheme in real-time
multilevel focus+context visualization of large-scale 2D
and 3D images. As opposed to in-place magnification of
ROIs, the presented mode of focus+context visualization
uses contextual close-ups to display spatially separate
magnification of ROIs constructed through perfect
reconstructions.

1.5. Article roadmap

This article is organized as follows. In Section 2, we
present the notations used throughout the article. Next,
we formulate the problem definition in Section 3, which is
followed by a brief survey of the existing related work in
Section 4. Section 5 presents our method for devising a
balanced multiresolution scheme accompanied by two
examples – one for odd-length and the other for even-
length decomposition filter vectors. We demonstrate the
application of a balanced multiresolution scheme devised
by our method in real-time focus+context visualization
with experimental results in Section 6. In Section 7, we
discuss with examples what may lead to unwanted extraor-
dinary boundary reconstruction filters and highlight some
characteristics of our method with possible directions for
future work. Finally, Section 8 concludes the article. We also
provide two appendices with additional examples of bal-
anced multiresolution schemes devised by our method.
2. Notation

2.1. Multiresolution

In this article, we adopted the notations for represent-
ing multiresolution operations used by Samavati et al. in
[28]. The superscripts k and l used in this section represent
the levels of resolution. Multiresolution operations are

specified in terms of analysis filter matrices Ak and Bk

and synthesis filter matrices Pk and Q k. Given a column

vector of samples Ck, a lower-resolution sample vector

Ck�1 is obtained by the application of a downsampling filter

on Ck. This can be expressed by the matrix equation

Ck�1 ¼ AkCk:

The details Dk�1, lost after downsampling, are captured

using Bk as follows:

Dk�1 ¼ BkCk:

This process of obtaining the low-resolution sample vector

Ck�1 and the corresponding details Dk�1 from a given high-

resolution sample vector Ck is known as decomposition.
Note that the sequences of samples along each dimension
of an image can be treated independently during



f2 f1 f1 f2 fn fn fn-1
(a) Half-sample symmetry.

f3 f2 f1 f2 fn fn-1 fn-2
(b) Whole-sample symmetry.

-f2 -f1 f1 f2 fn -fn -fn-1

(c) Half-sample antisymmetry.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 3. Symmetric and antisymmetric extensions.
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decomposition. Therefore, any such sequence of samples

can form the column vector of samples Ck for
decomposition.

The process of recovering the original high-resolution

sample vector Ck from the previously obtained low-

resolution sample vector Ck�1 and the corresponding

details Dk�1 is known as reconstruction. The reconstruction
process requires the refinement of the low-resolution

sample vector Ck�1 and the corresponding details Dk�1 by

the application of synthesis filters Pk and Q k as follows:

Ck ¼ PkCk�1 þ Q kDk�1:

This equation reverses the prior application of Ak and Bk on

the given high-resolution sample vector Ck. Therefore,
decomposition and reconstruction are inverse processes
satisfying

Ak

Bk

" #
Pk Q k
� �

¼
I 0
0 I

� �
:

If we recursively decompose a high-resolution sample

vector Ck into its coarser approximations Cl;Clþ1; . . . ;Ck�1

and details Dl;Dlþ1; . . . ;Dk�1, then the sequence

Cl;Dl;Dlþ1; . . . ;Dk�1 is known as a wavelet transform. Here,

l < k and Cl is the very coarse approximation of the dataset.

Each of Clþ1; . . . ;Ck�1;Ck can be reconstructed from the

wavelet transform Cl;Dl;Dlþ1; . . . ;Dk�1.
To simplify the notations for the rest of this article, we

may omit the superscript k for the kth level of resolution

assuming F ¼ Ck;C ¼ Ck�1;D ¼ Dk�1;A ¼ Ak, and

B ¼ Bk;P ¼ Pk, and Q ¼ Q k. We further assume that the
matrices are of appropriate size to satisfy the following
equations:

C ¼ AF; ð1Þ
D ¼ BF; ð2Þ
F ¼ PC þ QD: ð3Þ

For use in the rest of the article, let a and b denote the
filter vectors containing the nonzero entries in a represen-
tative row of A and B, respectively. Similarly, let p and q
stand for the filter vectors containing the nonzero entries
in a representative column of P and Q , respectively.
Furthermore, let sizeof ðVÞ represent the number of ele-
ments in vector V and the widths of filter vectors a and b
be represented by wa and wb, respectively, i.e.
sizeof ðaÞ ¼ wa and sizeof ðbÞ ¼ wb.

2.2. Symmetric and antisymmetric extensions

Fig. 3 shows three types of extensions as defined in [15].
Consider a sequence of n samples ðf 1; f 2; . . . ; f nÞ,
corresponding to a column vector of samples

f 1 f 2 . . . f n½ �T , where n 2 N and n P 3. Fig. 3(a), (b),
and (c) show the extended sequences obtained through
half-sample symmetric, whole-sample symmetric, and
half-sample antisymmetric extensions, respectively, at both
ends of ðf 1; f 2; . . . ; f nÞ. Whole-sample antisymmetry, not
shown in Fig. 3, can be obtained by negating the samples
in the extensions of Fig. 3(b). Note that the types of exten-
sions at both ends of a sequence do not necessarily have
to be the same (as used in Fig. 12, for example).

To be consistent with the coloring used in Fig. 3, from
this point forward in this article, notations and figures
may use red, purple, and green to denote the samples
introduced by half-sample symmetric, whole-sample
symmetric, and half-sample antisymmetric extensions,
respectively.
3. Problem definition

Given a set of regular multiresolution filters in the form
of symmetric/antisymmetric filter vectors a;b;p, and q,
devise a balanced multiresolution scheme applicable to a
high-resolution column vector of samples F that satisfies:

(i) C ¼ AF 0 and D ¼ BF 0, analogous to Eqs. (1) and (2),
where F ! F 0 through symmetric extensions at its
boundaries and the nonzero entries in each row of
A and B correspond to the regular filters in the given
filter vectors a and b, respectively;

(ii) sizeof ðCÞ ¼ sizeof ðDÞ i.e. a balanced decomposition;
(iii) sizeof ðCÞ þ sizeof ðDÞ ¼ sizeof ðFÞ i.e. a compact

representation of the resulting balanced wavelet
transform; and

(iv) F ¼ PC0 þ QD0, analogous to Eq. (3), where C ! C0

and D! D0 through symmetric/antisymmetric
extensions at their boundaries and the nonzero
entries in each column of P and Q correspond to
the regular filters in the given filter vectors p and
q, respectively.

4. Related work

In the next three subsections, we review the existing
related work within the following three categories:
multiresolution, symmetric and antisymmetric extensions,
and focus+context visualization.
4.1. Multiresolution

4.1.1. Regular meshes
Here we review the multiresolution methods applicable

to curves and tensor-product meshes (surfaces and
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volumes) given their applicability to multidimensional
images due to their regular structure.

Hierarchical representation of multiresolution tensor-
product surfaces was made possible due to the pioneering
work of Forsey and Bartels [10]. They localized the editing
effect in a desired manner on tensor-product surfaces
through hierarchically controlled subdivisions. This was
done by adding finer sets of B-splines onto existing coarse
sets. However, it resulted in an over-representation
because the union of the sets of basis functions from differ-
ent resolutions did not form a set of basis functions. Adding
complementary basis functions to the coarse set of basis
functions is a possible way to resolve the problem of
over-representation. This means of supporting multires-
olution is closely aligned to the wavelet theory approach
to multiresolution [29]. Wavelet representations of details
may, however, introduce undesired undulations, as
pointed out by Gortler and Cohen [11]. Furthermore, under
this approach, optimizing the behavior of the analysis
(decomposition) using least squares is difficult due to the
need to support interactive mesh manipulations [36].

Samavati and Bartels pioneered in their work on a
mathematically clean and efficient approach to multires-
olution based on reverse subdivision [26,3,2,4]. Under this
approach, during the analysis, each coarse vertex is
obtained by efficiently solving a local least squares
optimization problem. The use of least squares optimiza-
tion reduces the undesired undulations. Additionally, the
resulting wavelets provide a much more compact support
compared to the conventional wavelets for curves and
regular surfaces. Some of the examples demonstrating
the application of our proposed method use multires-
olution filters resulting from this approach (see the
examples in Section 5, for instance).
4.1.2. Images
Notable existing approaches obtaining a multires-

olution representation supporting context-aware visual-
ization of 3D images include the wavelet tree [34],
segmentation of texture-space into an octree [17,24,23],
octree-based tensor approximation hierarchy [30], and tri-
linear resampling on the Graphics Processing Unit (GPU)
coupled with the deformation of regularly partitioned
image regions [35]. For 4D images, the wavelet-based
time–space partitioning (WTSP) tree was used in [34]. In
[34], Haar [12,29] and Daubechies’s D4 [7] wavelets were
used to construct the wavelet transforms in each node of
the wavelet and WTSP trees.
4.2. Symmetric and antisymmetric extensions

As mentioned earlier, we achieve balanced decomposi-
tion and subsequent perfect reconstruction based on the
use of an appropriate combination of symmetric and
antisymmetric extensions near the image and detail
boundaries. In the literature, symmetric and antisymmet-
ric extensions were used in the context of various types
of wavelet transforms [18,16,1,19]. In contrast, our
proposed method allows the construction of a balanced
wavelet transform.
For end point and boundary interpolations, extraordin-
ary filters (as opposed to regular filters) are used in
multiresolution methods for curves and regular meshes,
respectively. However, the use of extraordinary filters at
image boundaries for boundary interpolation assigns
incongruous importance to the image boundaries. So for
2D or 3D image decomposition, the general practice is to
use symmetric extensions near the image boundaries to
avoid boundary case evaluations using extraordinary fil-
ters [28]. However, an arbitrary choice of symmetric exten-
sion for decomposition while using a given set of
multiresolution filters may eventually lead to the use of
extraordinary boundary filters for a perfect reconstruction
(see Section 7, for example). This can also make on-
demand reconstruction of image parts corresponding to a
ROI computationally untidy near the image boundaries.
Therefore, a careful setup of symmetric/antisymmetric
extensions for both decomposition and reconstruction is
required, which can be obtained by our presented method.
4.3. Focus+context visualization

Because we chose to demonstrate the use of a balanced
multiresolution scheme resulting from our method in a
real-time focus+context visualization application, here we
review some of the notable related work.

In many visualization tasks, it is useful to simultane-
ously visualize both the local and global views of the data,
possibly at different scales, which is known as focus+context
visualization. One approach to implement focus+context is
to use the metaphor of lenses [33,35,13]. This metaphor is
inspired by techniques used in traditional medical (see
Fig. 4), technical, and scientific illustrations [14].

Our implemented approach to focus+context visualiza-
tion of multidimensional images is closest to the technique
presented by Taerum et al. for the visualization of small-
scale clinical volumetric datasets [33]. In their approach,
the resolution of a given 3D image is reduced by one level
using reverse subdivision [26,3], which is rendered during
user interactions to achieve interactive frame rates. The 3D
image is rendered in the original resolution while there is
no user-interaction. The ROI identified by a query window
is enlarged by the application of B-spline subdivision to
allow different levels of smoothness. Therefore, the
authors used only three different levels of resolution. In
contrast, our implementation for multiresolution visual-
ization of images provides a true multiresolution frame-
work, where the resolutions of both the coarse image
(providing context information) and the enlarged ROI (pro-
viding focus information) can be controlled by the user.
5. Methodology: balanced multiresolution

In this section, we explain and demonstrate by exam-
ples how our method achieves balanced decomposition
and subsequent perfect reconstruction by choosing an
appropriate combination of symmetric and antisymmetric
extensions near the image and detail boundaries.



(a) A circular ROI. (b) A rectangular ROI.

Fig. 4. Traditional focus+context visualization in medical illustrations. (a) Thrombosis in human brain. Copyright Fairman Studios, LLC. Used with
permission. (b) An embolic stroke, showing a blockage lodged in a blood vessel. Blausen Medical Communications, Inc. Used under the Creative Commons
Attribution 3.0 Unported license.
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5.1. Balanced decomposition

We defined balanced decomposition as the task of
decomposing a high-resolution image into a low-res-
olution image and corresponding details of equal size.
Balanced decomposition of a 3D image of dimensions
2w� 2h� 2s results in an image of dimensions w� h� s
after one level of widthwise, heightwise, and depthwise
decomposition. To allow l levels of balanced decomposi-
tion, we need the following conditions to be satisfied:

2w ¼ 2lm;2h ¼ 2ln, and 2s ¼ 2lz, where m;n; z 2 Zþ.
Disregarding the third dimension infers the same idea for
a 2D image. Once the ideal dimensions are known, the
high-resolution image should be uniformly resampled to
those dimensions before the application of our balanced
decomposition procedure.

Given the decomposition filter vectors a and b, to
achieve a balanced decomposition of a column vector con-
taining an even number of fine samples F, we first decide
on the type of symmetric extension to use for decomposi-
tion based on the parity of wa and wb. Then an extended
column vector of fine samples F 0 is obtained from F,
through the chosen type of symmetric extension, such that
sizeof ðF 0Þ ensures the generation of sizeof ðFÞ=2 coarse
samples and sizeof ðFÞ=2 detail samples by a subsequent
application of filter vectors a and b on F 0, respectively.

5.1.1. Demonstration by example
Before we outline the general construction for the bal-

anced decomposition process, here we demonstrate how
it works for a given set of decomposition filter vectors. In
this example, we consider the decomposition filter vectors
a and b from following set of local regular multiresolution
filters [27,28]:
a ¼ � 1
4

3
4

3
4 � 1

4

� �
;

b ¼ 1
4 � 3

4
3
4 � 1

4

� �
;

p ¼ 1
4

3
4

3
4

1
4

� �
;

q ¼ � 1
4 � 3

4
3
4

1
4

� �
:

8>>><
>>>:

ð4Þ

The filter vectors in Eq. (4) are known as the short filters of
quadratic (third order) B-spline [28] and were constructed
by reversing Chaikin subdivision [6]. Recall from Section 2
that filter vectors a and b contain the nonzero entries in a
representative row of analysis filter matrices A and B,
respectively.

For the purpose of demonstration, assume that we are
given a fine column vector of 8 samples

F ¼ f 1 f 2 . . . f 8½ �T , on which we have to perform a
balanced decomposition. Provided sizeof ðFÞ ¼ 8, a balanced
decomposition should result in column vectors of coarse
samples C ¼ c1 c2 c3 c4½ �T and detail samples

D ¼ d1 d2 d3 d4½ �T .
In Fig. 5, we present one possible setup to obtain such a

balanced decomposition. It shows the application of
equations C ¼ AF 0 and D ¼ BF 0, analogous to Eqs. (1) and

(2), where F 0 ¼ f 1 f 1 f 2 . . . f 8 f 8½ �T . First, note that
F 0 was obtained by extending the given sample vector F by
2 extra samples. In general, when the dilation factor is 2, a
given column vector of fine samples F, with sizeof ðFÞ ¼ 2n
for n 2 Zþ, does not have enough samples to accommodate
n shifts of both a and b for generating n coarse and n detail
samples, respectively. The number of extra samples x,
required for a balanced decomposition can be obtained by
the general formula:

x ¼ maxðwa;wbÞ þ 2ðn� 1Þ � 2n ð5Þ
) x ¼ maxðwa;wbÞ � 2: ð6Þ



Fig. 5. Balanced decomposition of 8 fine samples using the decomposi-
tion filter vectors a and b from Eq. (4).
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Here we explain how Eq. (5) evaluates x. We need at least
maxðwa;wbÞ fine samples to obtain both c1 and d1, which
explains the first term on the right-hand side of Eq. (5).
Next, because the dilation factor is 2, every 2 additional
samples will guarantee the generation of an additional pair
of ci and di. Here, i 2 f2; . . . ;ng because we want to gener-
ate f2; . . . ;ngj j ¼ n� 1 more coarse samples and n� 1
more detail samples to achieve a balanced decomposition.
This indicates the need for an additional 2ðn� 1Þ fine sam-
ples, justifying the addition of the second term on the
right-hand side of Eq. (5). Therefore, subtracting 2n i.e.
the sizeof ðFÞ in the third term gives us the required num-
ber of extra samples.

For the families of multiresolution filters we consider in
this article, wa and wb are either both even or both odd. For
example, see the decomposition filter vectors obtained
from B-spline wavelets [28], biorthogonal and reverse
biorthogonal wavelets [5,8], and Meyer wavelets [21,8].
The multiresolution filter vectors obtained from most such
wavelets and their scaling functions are available in com-
monly used mathematical software packages such as
MATLAB [20]. For the given filter vectors a and b in Eq.
(4), because both wa and wb are even, observe that the
extension of F by 2 extra samples to obtain F 0 was achieved
by half-sample symmetric extension at both ends of F.
Here we would have used whole-sample symmetric exten-
sion instead if both wa and wb were odd. Use of an appro-
priate type of symmetric extension is required to avoid the
use of any extraordinary boundary filters for a perfect
reconstruction. We justify our choice of symmetric exten-
sion for a balanced decomposition later in Section 5.3.

Finally, as shown in Fig. 5, the filter vectors a and b in
Eq. (4) are applied to the samples in F 0 to obtain C and D
in order to complete the balanced decomposition process.
For instance, the coarse sample c1 and the detail sample
d1 are computed from the first 4 samples in F 0 as follows:

c1 ¼ � 1
4 f 1 þ 3

4 f 1 þ 3
4 f 2 � 1

4 f 3;

d1 ¼ 1
4 f 1 � 3

4 f 1 þ 3
4 f 2 � 1

4 f 3:

(
ð7Þ
Note that the total contribution of f 1 in the construction of
c1 is 1

2 f 1, written as � 1
4 f 1 þ 3

4 f 1 in Eq. (7) through an
implicit sample split operation. A similar sample split is
observed in the construction of d1, as shown in Eq. (7).
Therefore, the symmetric extensions at both ends of F
implicitly lead to a number of sample split operations
during decomposition.

Therefore, for n 2 Zþ, a balanced multiresolution
scheme based on the short filters of quadratic B-spline
given in Eq. (4) can make use of the matrix equations

and

for the decomposition process, analogous to Eqs. (1) and
(2).

5.1.2. General construction
Now we present our general approach for achieving a

balanced decomposition. Given the symmetric/antisym-
metric decomposition filter vectors a and b containing only
regular filters, carry out the following steps to achieve a
balanced decomposition of a fine column vector of samples
F, where sizeof ðFÞ ¼ 2n for a suitably large n 2 Zþ.

1. Determine x, the number of extra samples required for a
balanced decomposition using Eq. (6).

2. If both wa and wa are even, extend F with x extra
samples using half-sample symmetric extension to
obtain F 0. Use whole-sample symmetric extension
instead if both wa and wa are odd. Justification of our
choice of symmetric extension can be found in
Section 5.3. To avoid giving inconsistent importance to
any end (boundary) of F:
(a) If x is even, introduce x=2 samples at each end of F.
(b) If x is odd, introduce bx=2c samples at one end and
bx=2c þ 1 samples at the other end of F. Let us refer
to the end at which bx=2c þ 1 samples are intro-
duced as the odd end. Alternate between the ends
of F as the choice of the odd end during multiple
levels of decomposition.

3. To obtain C and D such that sizeof ðCÞ ¼ sizeof ðDÞ, use
equations C ¼ AF 0 and D ¼ BF 0, analogous to Eqs. (1)
and (2).
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5.2. Perfect reconstruction

Given the reconstruction filter vectors p and q that can
reverse the application of the decomposition filter vectors
a and b, to achieve a perfect reconstruction of the column
vector of fine samples F from its prior balanced decomposi-
tion into C and D, we first reconstruct as many interior
samples of F as possible by the application of p and q on
C and D, using Eq. (3). To evaluate the samples near each
boundary (end) of F, we form a square system of linear
equations based on the prior construction of corresponding
boundary samples in C and D, where the unknowns consti-
tute the boundary samples of F yet to be reconstructed.
Symbolically solving two such square systems for the
two boundaries of F reveals the extended versions of C
and D (denoted by C0 and D0, respectively) required for a
perfect reconstruction by the application of p and q using
equation F ¼ PC0 þ QD0, analogous to Eq. (3).

5.2.1. Demonstration by example
Here we demonstrate how we perform a perfect recon-

struction of F following its balanced decomposition to C
and D by means of an example, before giving the general
construction for our perfect reconstruction process. In this
example, we consider the reconstruction filter vectors p
and q given in Eq. (4). Recall from Section 2 that filter vec-
tors p and q contain the nonzero entries in a representative
column of synthesis filter matrices P and Q , respectively.
This example to demonstrate our perfect reconstruction
process is an extension of the example shown in Fig. 5. So,
from the resulting column vectors coarse samples
C ¼ c1 c2 c3 c4½ �T and detail samples D ¼ d1 d2½
d3d4�T in Section 5.1, we now want to reconstruct the
corresponding column vector of fine samples

F ¼ f 1 f 2 . . . f 8½ �T .
In Fig. 6, we show the application of the filter vectors p

and q to the samples in C and D, respectively. For instance,
the fine sample f 2 is reconstructed from the first two
coarse samples and the first two detail samples as follows:
Fig. 6. Perfect reconstruction of 6 of the 8 fine samples using the
reconstruction filter vectors p and q from Eq. (4).
f 2 ¼
3
4

c1 þ
1
4

c2 þ
3
4

d1 �
1
4

d2:

Note that the application of the filter vectors p and q to
the samples in C and D in Fig. 6 left two samples, f 1 and f 8,
near the two ends of F not reconstructed. Note that having
two samples near the boundaries of F yet to reconstruct is
specific to this example. The example in Section 5.4
receives 5 samples yet to reconstruct at this stage. Now,
to reconstruct f 1, we form the following 1� 1 system of
linear equations based on the prior construction of c1 (as
shown in Fig. 5) to which f 1 made some contribution dur-
ing decomposition:

c1 ¼ �
1
4

f 1 þ
3
4

f 1 þ
3
4

f 2 �
1
4

f 3 ð8Þ

) f 1 ¼ 2c1 �
3
2

f 2 þ
1
2

f 3

) f 1 ¼ 2c1 �
3
2

3
4

c1 þ
1
4

c2 þ
3
4

d1 �
1
4

d2

� 	

þ 1
2

1
4

c1 þ
3
4

c2 þ
1
4

d1 �
3
4

d2

� 	

) f 1 ¼ c1 � d1: ð9Þ

Although it appears from Eq. (9) that f 1 is not recon-
structed using regular filters, our prior appropriate choice
of symmetric extension to obtain F 0 from F (justified later
in Section 5.3) guarantees that we can rewrite f 1 using
the regular filter values from p and q in Eq. (4). This is
achieved by a rearrangement of the right-hand side of Eq.
(9), which is implicitly equivalent to performing two sam-
ple split operations:

f 1 ¼
1
4

c1 þ
3
4

c1 þ
1
4
ð�d1Þ �

3
4

d1: ð10Þ

This rewriting step is important because it allows the
reconstruction of fine samples near the boundaries of F
without the use of any extraordinary boundary filters. Eq.
(10) now yields the introduction of one extra coarse sam-
ple through half-sample symmetric extension and one
extra detail sample through half-sample antisymmetric
extension for the reconstruction of f 1, as shown in Fig. 7.
We use a similar approach to determine how to recon-
struct the boundary sample f 8, resulting in

f 8 ¼
3
4

c4 þ
1
4

c4 þ
3
4

d1 �
1
4
ð�d4Þ; ð11Þ

as reflected in Fig. 7. This concludes the perfect reconstruc-
tion process.

Therefore, based on our findings from Eqs. (10) and
(11), for a given column vector of 2n fine samples for a
suitably large n 2 Zþ, we get

f 1 ¼ 1
4 c1 þ 3

4 c1 þ 1
4 ð�d1Þ � 3

4 d1;

f 2n ¼ 3
4 cn þ 1

4 cn þ 3
4 dn � 1

4 ð�dnÞ:

(

So a balanced multiresolution scheme based on the short
filters of quadratic B-spline given in Eq. (4) will make use
of the matrix equation



Fig. 7. Perfect reconstruction of 8 fine samples using the reconstruction filter vectors p and q from Eq. (4).
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for the reconstruction process, analogous to Eq. (3).
5.2.2. General construction
Now we describe our general approach to achieve

perfect reconstruction. Given the symmetric/antisymmet-
ric reconstruction filter vectors p and q containing only
regular filters that can reverse the application of the
decomposition filter vectors a and b, carry out the
following steps to perfectly reconstruct the column vector
of fine samples F from its prior balanced decomposition
into C and D.
1. Assume that F ¼ FT
l FT

m FT
r

� �T , where Fl and Fr

respectively contain some samples at the left and right
boundaries of F, and Fm contains the remaining interior
samples of F. To reconstruct the samples in Fm, use the
equation Fm ¼ PC þ QD, analogous to Eq. (3). The sam-
ples in Fl and Fr are yet to be reconstructed.
(In the example above, we had Fl ¼ f 1½ �; Fm ¼
f 2 f 3 . . . f 7½ �T , and Fr ¼ f 8½ �. Note that Fl and Fr

may contain more samples; for instance, the Fl and Fr

encountered in 5.4 have 2 and 3 samples, respectively.)
2. To reconstruct the samples in Fl:

(a) Form a system of linear equations based on the
prior construction of some coarse and detail bound-
ary samples, to which the fine samples in Fl made
some contributions during the decomposition pro-
cess. It should be a q� q system, where
q ¼ sizeof ðFlÞ and the unknowns are the samples
of Fl.
(For example, see the 1� 1 system formed by Eq.
(8) and the 2� 2 system formed by the two equa-
tions in (19).)

(b) Solving the system formed in step 2(a) symbolically
will evaluate the samples in Fl as a linear combina-
tion of some samples from C and D.
(For example, see Eq. (9) and the two equations in
(20).)

(c) Rewrite the linear combination(s) of coarse and
detail samples on the right-hand side(s) of the
equation(s) obtained in step 2(b) using the regular
filter values from the filter vectors p and q as coeffi-
cients. Such rewriting of fine samples here corre-
lates to performing sample split operations. This
will reveal the following two pieces of information
applicable to the left boundaries of C and D for a
perfect reconstruction: (i) the type of symmetric/
antisymmetric extension that must be used and



Fig. 8. Balanced decomposition of 8 fine samples using the decomposition filter vectors a and b from Eq. (12).

Fig. 9. Perfect reconstruction of 8 fine samples using the reconstruction filter vectors p and q from Eq. (12).
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(ii) the number of extra samples that must be to
introduced.(For example, see Eq. (10) and the
equations in (21).)

3. Use an approach similar to that in step 2 to reconstruct
the samples in Fr .

Note that steps 2–3 above allow the generation of C0

and D0 respectively from C and D, such that condition (iv)
of the problem definition given in Section 3 is satisfied.
5.3. Choice of symmetric extension for decomposition

5.3.1. Claim
For a given set of symmetric/antisymmetric multires-

olution filter vectors a;b;p, and q, even values of wa and
wb imply the use of half-sample symmetric extensions at
the image boundaries during a balanced decomposition
to ensure a perfect reconstruction only using the regular
reconstruction filters from p and q. On the other hand,
odd values of wa and wb imply the use of whole-sample
symmetric extensions instead.
5.3.2. Proof outline
We outline the proof by means of an example that

makes use of the filter vectors containing only regular
filters,

a ¼ a�2 a�1 a1 a2½ �;
b ¼ b�2 b�1 b1 b2½ �;
p ¼ p�2 p�1 p1 p2½ �;
q ¼ q�2 q�1 q1 q2½ �:

8>>><
>>>:

ð12Þ

The widths of the filter vectors a;b;p, and q in Eq. (12) are
assumed to be 4 as in the case of the filter vectors contain-
ing the short filters of quadratic B-spline in Eq. (4). So, here
wa and wb are even. Next, two possible balanced
decompositions of a fine column vector of 8 samples

F ¼ f 1 f 2 . . . f 8½ �T are shown by the use of half-sample
and whole-sample symmetric extensions at its boundaries
in Figs. 8(a) and (b), respectively.

Now, our goal is to perfectly reconstruct F from the

column vectors of coarse samples C ¼ c1 c2 c3 c4½ �T

and detail samples D ¼ d1 d2 d3 d4½ �T using only the



Table 1
Sufficient conditions for symmetric and antisymmetric extensions.

Case Sufficient conditions aci Type of extension

I wðc1Þ ¼ p2 þ p�1
wðc2Þ ¼ 0



c1 Half-sample symmetry

II wðc1Þ ¼ �p2 þ p�1
wðc2Þ ¼ 0



�c1 Half-sample antisymmetry

III wðc1Þ ¼ p�1
wðc2Þ ¼ p2



c2 Whole-sample symmetry

IV wðc1Þ ¼ p�1

 �c2 Whole-sample antisymmetry
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regular reconstruction filters vectors p and q from Eq. (12)
as shown in Fig. 9.

We intend to evaluate the unknowns in Fig. 9, which are
aci 2 f�c1; c1;�c2; c2g; bcj 2 f�c3; c3;�c4; c4g; cdk 2 f�d1;

d1;�d2; d2g, and ddl 2 f�d3; d3;�d4; d4g near the bound-
aries of C and D. Once evaluated, these will reveal the type
of symmetric/antisymmetric extensions to be used at the
boundaries of C and D to ensure a perfect reconstruction
using only the regular reconstruction filters. Here
a; b; c; d 2 fþ;�g represent the signs of ci; cj; dk and dl,
respectively. When negative, they allow the representation
of antisymmetric extensions.

Now, let us try to evaluate aci. As shown in Fig. 9, aci

contributes to the reconstruction of f 1. If we consider the
balanced decomposition shown in Fig. 8(a) and try to
evaluate f 1 following our general approach from
Section 5.2, we get

c1 ¼ a�2f 1 þ a�1f 1 þ a1f 2 þ a2f 3

) f 1 ¼
1

a�2 þ a�1
c1 �

a1

a�2 þ a�1
f 2 �

a2

a�2 þ a�1
f 3

) f 1 ¼
1

a�2 þ a�1
c1

� a1

a�2 þ a�1
p1c1 þ p�2c2 þ q1d1 þ q�2d2ð Þ

� a2

a�2 þ a�1
p2c1 þ p�1c2 þ q2d1 þ q�1d2ð Þ

) f 1 ¼
1� a1p1 � a2p2

a�2 þ a�1

� 	
c1 þ

�a1p�2 � a2p�1

a�2 þ a�1

� 	
c2

þ �a1q1 � a2q2

a�2 þ a�1

� 	
d1 þ

�a1q�2 � a2q�1

a�2 þ a�1

� 	
d2: ð13Þ

Next, if we consider the balanced decomposition shown in
Fig. 8(b) and try to evaluate f 1 following our general
approach from Section 5.2, we get

c1 ¼ a�2f 2 þ a�1f 1 þ a1f 2 þ a2f 3

) f 1 ¼
1

a�1
c1 �

a�2 þ a1

a�1
f 2 �

a2

a�1
f 3

) f 1 ¼
1

a�1
c1 �

a�2 þ a1

a�1
p1c1 þ p�2c2 þ q1d1 þ q�2d2ð Þ

þ a2

a�1
p2c1 þ p�1c2 þ q2d1 þ q�1d2ð Þ

) f 1 ¼
1� a�2p1 � a1p1 � a2p2

a�1

� 	
c1

þ �a�2p2 � a1p2 � a2p�1

a�1

� 	
c2

þ �a�2q1 � a1q1 � a2q2

a�1

� 	
d1

þ �a�2q2 � a1q2 � a2q�1

a�1

� 	
d2: ð14Þ

Let the filter values multiplied to c1 and c2 in the recon-
struction of f 1 be denoted by wðc1Þ and wðc2Þ, respectively.
In Eq. (13),

wðc1Þ ¼ 1�a1p1�a2p2
a�2þa�1

;

wðc2Þ ¼ �a1p�2�a2p�1
a�2þa�1

;

(
ð15Þ
which result from using half-sample symmetric extension
at the left boundary F for a balanced decomposition. On the
other hand, in Eq. (14),
wðc1Þ ¼ 1�a�2p1�a1p1�a2p2
a�1

;

wðc2Þ ¼ �a�2p2�a1p2�a2p�1
a�1

;

(
ð16Þ
which result from using whole-sample symmetric exten-
sion instead. Now, according to Fig. 9, f 1 is reconstructed
as follows:
f 1 ¼ p2ðaciÞ þ p�1c1 þ q2ðadkÞ � q�1d1: ð17Þ
If we consider aci ¼ �c1 in Eq. (17) for example, then
wðc1Þ ¼ �p2 þ p�1 and wðc2Þ ¼ 0. If �c1 is substituted in
Fig. 9 in place of aci, it would then reveal the need for
half-sample antisymmetric extension for the left boundary
of C to be used during reconstruction. In this manner,
Table 1 lists the sufficient conditions for all possible values
of aci. Note that each possible value of aci yields a
particular type of extension (listed in Table 1) for the left
boundary of C.

Now, if we substitute the actual values of the
corresponding regular filters of quadratic B-spline from
Eq. (4) in Eqs. (15) and (16), we find that Eq. (15) only satis-
fies the sufficient conditions under case I (i.e. aci ¼ c1) in
Table 1 and Eq. (16) does not satisfy the sufficient condi-
tions under any of the cases. Recall that Eq. (15) was
obtained by the use of half-sample symmetric extension
on the left boundary of F for a balanced decomposition.
This implies that the use of half-sample symmetric exten-
sion at the left boundary of F for a balanced decomposition
will ensure the perfect reconstruction of that boundary
only using regular reconstruction filters. Similarly, for the
regular filters of quadratic B-spline from Eq. (4), we can
show that bcj ¼ c4; cdk ¼ �d1, and ddl ¼ �d4; and they all
require the use of half-sample symmetric extension at
the boundaries of F for a balanced decomposition.

In the above manner, we can show that for any set of
symmetric/antisymmetric filter vectors a;b;p, and q,
where wa and wb are even, half-sample symmetric exten-
sion can be used at the boundaries of a column vector of
fine samples for a balanced decomposition to ensure a per-
fect reconstruction only using the regular reconstruction
filters from p and q. A similar proof can be outlined to
show that odd values of wa and wb imply the use of
whole-sample symmetric extension instead.
wðc2Þ ¼ �p2



Fig. 10. Balanced decomposition of 8 fine samples using the decomposition filter vectors a and b from Eq. (18).
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5.4. Further demonstration by example

The example in this section illustrates the use of
decomposition filter vectors of odd width for a balanced
decomposition as opposed to the even width of
decomposition filter vectors in the previous example
(subSections 5.1 and 5.2). Further examples are provided
in Appendix A.

5.4.1. Balanced decomposition
Here we demonstrate our general approach described in

Section 5.1 using the decomposition filter vectors a and b
from following set of local regular multiresolution filters
[3,28]:

a ¼ 1
8 � 1

2
3
8 1 3

8 � 1
2

1
8

� �
;

b ¼ � 1
8

1
2 � 3

4
1
2 � 1

8

� �
;

p ¼ 1
8

1
2

3
4

1
2

1
8

� �
;

q ¼ 1
8

1
2

3
8 �1 3

8
1
2

1
8

� �
:

8>>><
>>>:

ð18Þ

The filter vectors in Eq. (18) are known as the inverse powers
of two filters of cubic (fourth order) B-spline [28]. We
explain the balanced decomposition process using the
decomposition filter vectors in Eq. (18) through the exam-
ple shown in Fig. 10. Similar to the previous example shown
in Fig. 5, here we have a column vector of 8 fine samples

F ¼ f 1 f 2 . . . f 8½ �T that we want to decompose into the

column vectors of coarse samples C ¼ c1 c2 c3 c4½ �T

and detail samples D ¼ d1 d2 d3 d4½ �T .
Fig. 10 shows one possible balanced decomposition

using our general approach presented in Section 5.1. Step
1 of our general construction given in Section 5.1 reveals that
5 extra samples are required to ensure a balanced
decomposition. As noted earlier, wa and wb for the filter vec-
tors in Eq. (18) are odd. So according to step 2, whole-sam-
ple symmetric extension is used to introduce 2 extra
samples at one end and 3 extra samples at the other end
of F to obtain the extended column vector of fine samples

F 0 ¼ f 3 f 2 f 1 f 2 . . . f 8 f 7 f 6 f 5½ �T . Finally, accord-
ing to step 3, the filter vectors a and b from Eq. (18) are
applied to F 0 to obtain C and D by means of the equations
C ¼ AF 0 and D ¼ BF 0, analogous to Eqs. (1) and (2).
Therefore, for n 2 Zþ, a balanced multiresolution scheme
based on the inverse powers of two filters of cubic B-spline
given in Eq. (18) can make use of the matrix equations

and

for the decomposition process, analogous to Eqs. (1) and
(2).



Fig. 11. Perfect reconstruction of 3 of the 8 fine samples using the
reconstruction filter vectors p and q from Eq. (18).
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5.4.2. Perfect reconstruction
Here we demonstrate our general approach described in

Section 5.2 using the reconstruction filter vectors p and q
given in Eq. (18). They can reverse the application of the
decomposition filters vectors a and b from Eq. (18). Given

the column vectors of coarse samples C ¼ c1 c2 c3 c4½ �T

and detail samples D ¼ d1 d2 d3 d4½ �T (obtained as
shown in Fig. 10), we now want to perfectly reconstruct the

column vector fine samples F ¼ f 1 f 2 . . . f 8½ �T .

Fig. 11 shows the reconstruction of Fm ¼ f 3 f 4 f 5½ �T

according to step 1 of our general construction given in

Section 5.2. Fl ¼ f 1 f 2½ �T and Fr ¼ f 6 f 7 f 8½ �T are yet
to be reconstructed.

Next, following step 2(a) of our given general construc-
tion, we form the following system of 2 linear equations
in 2 unknowns (f 1 and f 2 in Fl):
c1 ¼ 1
8 f 3 � 1

2 f 2 þ 3
8 f 1 þ f 2 þ 3

8 f 3 � 1
2 f 4 þ 1

8 f 5;

d1 ¼ � 1
8 f 3 þ 1

2 f 2 � 3
4 f 1 þ 1

2 f 2 � 1
8 f 3:

(
ð19Þ
The equations in (19) were obtained from Fig. 10, which
shows how c1 and d1 were computed during decomposi-
tion. Note that in (19), we can replace f 3; f 4, and f 5 with
the corresponding linear combinations of coarse and detail
Fig. 12. Perfect reconstruction of 8 fine samples using the
samples from Fig. 11. Then following step 2(b), solving the
2� 2 system formed by the equations in (19) gives

f 1 ¼ c1 � d1 þ d2;

f 2 ¼ 7
8 c1 þ 1

8 c2 þ 3
8 d1 þ 1

2 d2 þ 1
8 d3:

(
ð20Þ

Now, according to step 2(c), the equations in (20) can be
rewritten as follows such that the coefficients of the coarse
and detail samples are all regular filters from Eq. (18):

f 1 ¼ 1
2 c1 þ 1

2 c1 þ 1
2 d2 þ ð�1Þd1 þ 1

2 d2;

f 2 ¼ 1
8 c1 þ 3

4 c1 þ 1
8 c2 þ 1

8 d2 þ 3
8 d1 þ 3

8 d2 þ 1
8 d3:

(
ð21Þ

This rewriting required two implicit sample split opera-
tions on the right-hand side of each equation in
(21).Finally, following step 3 of our general construction to
reconstruct Fr , we form the following system of 3 linear
equations in 3 unknowns (f 6; f 7, and f 8 in Fr):

c3 ¼ 1
8 f 3 � 1

2 f 4 þ 3
8 f 5 þ f 6 þ 3

8 f 7 � 1
2 f 8 þ 1

8 f 7;

c4 ¼ 1
8 f 5 � 1

2 f 6 þ 3
8 f 7 þ f 8 þ 3

8 f 7 � 1
2 f 6 þ 1

8 f 5;

d4 ¼ � 1
8 f 5 þ 1

2 f 6 � 3
4 f 7 þ 1

2 f 8 � 1
8 f 7:

8><
>: ð22Þ

The equations in (22) were obtained from Fig. 10, which
shows how c3; c4, and d4 were evaluated during
decomposition. Observe that in (22), we can replace
f 3; f 4, and f 5 with the corresponding linear combinations
of coarse and detail samples from Fig. 11. Then solving
the 3� 3 system formed by the equations in (22) gives

f 6 ¼ 1
8 c2 þ 3

4 c3 þ 1
8 c4 þ 1

8 d2 þ 3
8 d3 þ 1

2 d4;

f 7 ¼ 1
2 c3 þ 1

2 c4 þ 1
2 d3 � 1

2 d4;

f 8 ¼ 1
4 c3 þ 3

4 c4 þ 1
4 d3 þ 3

4 d4:

8><
>: ð23Þ

Now, the equations in (23) can be rewritten as follows such
that the coefficients of the coarse and detail samples are all
regular filters from Eq. (18):

f 6 ¼ 1
8 c2 þ 3

4 c3 þ 1
8 c4 þ 1

8 d2 þ 3
8 d3 þ 3

8 d4 þ 1
8 d4;

f 7 ¼ 1
2 c3 þ 1

2 c4 þ 1
2 d3 þ ð�1Þd4 þ 1

2 d4;

f 8 ¼ 1
8 c3 þ 3

4 c4 þ 1
8 c3 þ 1

8 d3 þ 3
8 d4 þ 3

8 d4 þ 1
8 d3:

8><
>: ð24Þ
decomposition filter vectors a and b from Eq. (18).



Fig. 13. Focus+context visualization of 2D images at various resolutions.
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Fig. 14. Focus+context visualization of time-lapse imagery – monthly global images: (5440� 2752� 12;C4; F
4).
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Fig. 15. Focus+context visualization of a 3D image – female head (1056� 1528� 150;C3; F
3; F3).

M. Hasan et al. / Graphical Models 78 (2015) 36–59 51
As we mentioned in the general construction given in
Section 5.2, note that the equations in (21) and (24) yield
a specific type of symmetric extension for each boundary
of C and D as shown in Fig. 12. Therefore, based on (21)
and (24), for a given column vector of 2n fine samples
(n 2 Zþ), we get
f 1 ¼ 1
2c1þ 1

2c1þ 1
2 d2þð�1Þd1þ 1

2 d2;

f 2 ¼ 1
8c1þ 3

4c1þ 1
8 c2þ 1

8d2þ 3
8 d1þ 3

8d2þ 1
8d3;

f 2n�2 ¼ 1
8cn�2þ 3

4 cn�1þ 1
8cnþ 1

8 dn�2þ 3
8 dn�1þ 3

8 dnþ 1
8dn;

f 2n�1 ¼ 1
2cn�1þ 1

2 cnþ 1
2dn�1þð�1Þdnþ 1

2 dn;

f 2n ¼ 1
8cn�1þ 3

4 cnþ 1
8cn�1þ 1

8 dn�1þ 3
8 dnþ 3

8dnþ 1
8dn�1:

8>>>>>><
>>>>>>:
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So a balanced multiresolution scheme based on the inverse
powers of two filters of cubic B-spline given in Eq. (18) can
make use of the matrix equation

ð25Þ

for the reconstruction process, analogous to Eq. (3).
6. Application in focus+context visualization

Multiscale 2D and 3D image visualization applications
often exploit query window-based focus+context visualiza-
tion for image exploration and navigation purposes. A low-
resolution approximation is rendered to provide the context
and a selected portion of that low-resolution approximation
defining the focus, also known as the ROI, is rendered as a
close-up in high-resolution. While such visualization is sup-
ported by an underlying wavelet transform, it is necessary
to reconstruct the high-resolution approximation of the
ROI on demand from the low-resolution approximation
and corresponding details. Here the use of a balanced wave-
let transform constructed by our proposed method makes
locating the details straightforward. For instance, observe
the reconstruction of interior samples in Figs. 6 and 11. If
the first coarse sample for the reconstruction of a fine sam-
ple is ci, then first detail sample to use in the reconstruction
of that fine sample is di. This may not have been the case if
we had an unequal number of coarse and detail samples
from decomposition. Also, the only additional step required
to reconstruct the fine samples near the boundaries is the
use of specific symmetric/antisymmetric extensions,
because our method completely eliminates the need for
extraordinary boundary filters.

6.1. Overview of visualization tool

We have implemented a visualization tool prototype
named Focus+Context Studio to test our presented balanced
multiresolution framework for images. It robustly allows
real-time multilevel focus+context visualization of
large-scale 2D and 3D images, supported by multiple mov-
able query windows defining ROIs at different resolutions.
It currently uses the balanced multiresolution scheme we
devised using the short filters of quadratic B-spline in Eq.
(4), as described in the examples shown in subSections
5.1 and 5.2. Therefore, it uses half-sample symmetric
extensions for the sequences of fine samples during
decomposition in the fashion shown in Fig. 5. On the other
hand, for a perfect reconstruction, it uses half-sample sym-
metric extensions for the sequences of coarse samples and
half-sample antisymmetric extensions for the sequences of
detail samples in the manner shown in Fig. 7. The used bal-
anced multiresolution scheme in its general form can be
found in the second row of Table A.2. At the moment, all
the query windows are 32� 32 samples in dimension.

To facilitate focus+context visualization and explo-
ration of a 3D image, our prototype currently allows
the query windows identifying the ROIs to move back
and forth through sequential slices interactively by the
use of mouse scroll wheel and alternatively, the up and
down arrow keys on the keyboard. When the query win-
dows move from one slice to another, the low-resolution
approximation of the context and the high-resolution
approximations of the ROIs are updated on the fly in
real-time. For 3D images, currently it only performs
widthwise and heightwise decompositions, which keeps
the number of 2D slices intact for depthwise volume
exploration.
6.2. Experimental results

Here we present the experimental results produced by
our Focus+Context Studio prototype. The n-tuples ðn P 3Þ
used in the captions of Figs. 13–15 are defined as follows:
(image dimensions, Cd; F

r1 ; Fr2 ; . . . ; Frm ), where d is the
number of levels of (widthwise and heightwise)
decomposition for the context and rið1 6 i 6 mÞ is the
number of levels of reconstruction for deriving the high-
resolution approximation of the ith ROI. Fri appears in
the n-tuple in a position determined by the left-to-right
and top-to-bottom ordering of placement for the high-
resolutions approximations of the ROIs.

Fig. 13 shows various scenarios for focus+context
visualization of 2D images using our prototype.
Figs. 13(a) and (b) show multilevel focus+context visual-
ization of large-scale 2D images showing the topographic
and bathymetric shading of northwestern North America
(data source: D. Sandwell et al., University of California
San Diago, USA) and the topographic shading of Long
Island (data source: G. Hanson, Stony Brook University,
USA), respectively. Similar multilevel focus+context
visualization is shown for a diseased leaf (data source: S.
Fraser-Smith, Wikipedia) in Fig. 13(c). Such multilevel
focus+context visualization is motivated by the need for
more manageable utilization of screen space and visualiza-
tion of the context at a higher resolution while maintaining
interactive frame rates.

Next, for a 2D image, Figs. 13(d) and (e) show different
levels of decomposition for the context and different levels
of reconstruction for the high-resolution approximation of
the ROI using our developed tool. The 2D image used in
this example is an abdomen slice from a male (data source:
Male Abdomen, The Visible Human Project, U.S. National
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Library of Medicine). One advantage of allowing multiple
query windows corresponding to multiple ROIs is the abil-
ity to draw comparisons between similar ROIs when
required. Fig. 13(f) shows such a comparison scenario
between the tropical storm Parma on the left and typhoon
Melor on the right (data source: MODIS Rapid Response
Team, NASA). Another such scenario comparing the ice
near the coasts of Greenland and Alexander Island (data
source: Visible Earth, NASA) is shown in Fig. 13(g).

Our developed prototype is also suitable for the visual-
ization and exploration of time-lapse imagery. For
instance, Fig. 14 shows 12 unique frames from the interac-
tive transition through the 12 slices of monthly global
images (data source: R. Stöckli, Monthly Global Images,
NASA). The order of frames is shown by directions marked
on the curved-arrow in the middle. The ROI covers most of
northwestern North America and shows the transition
from one winter to the following winter.
Fig. 15 shows an example of visualization and explo-
ration of a 3D image in our prototype. For the purpose of
demonstration, the transition through 10 of the 150 slices
that the query windows were constrained to move back
and forth through are shown in Fig. 15 (data source:
Female head, The Visible Human Project, U.S. National
Library of Medicine). This head dataset contains a total of
1477 2D slices, each of dimensions 1056� 1528, among
which 150 sequential slices were loaded into our prototype
for this example.

7. Discussion and future work

Not using the type of symmetric extension suggested by
our general construction in Section 5.1 to obtain the extra
fine samples required for a balanced decomposition may
lead to the use of extraordinary boundary filters. For the
sake of comparison, we used half-sample symmetric
extension in place of the suggested whole-sample
symmetric extension to obtain the five extra fine samples
required for a balanced decomposition using the
decomposition filter vectors in Eq. (A.3), which contains
the wide and optimal filters of cubic B-spline. This led to
the following matrix equation for a perfect reconstruction,
both P and Q matrices containing unwanted extraordinary
boundary filters:
in place of Eq. (A.4). Note that such extraordinary
boundary filters in P and Q matrices do not allow the
anticipated sample split operations that yield suitable
symmetric/antisymmetric extensions to use for C and D
for a perfect reconstruction only by the use of regular
filters.

Our method can be used to devise a balanced multires-
olution scheme for any set of given regular multiresolution
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filter vectors. However, if the scheme would only make use
of regular reconstruction filters is determined by the
properties of the given multiresolution filter vectors. If
the given filter vectors are symmetric/antisymmetric, then
our method can devise a balanced multiresolution scheme
that only uses regular filters. Otherwise, some extraordin-
ary boundary reconstruction filters are introduced (see B,
for instance).

The balanced multiresolution schemes devised by our
approach can also be applied to open curves and tensor
product meshes (surfaces and volumes) in applications
where boundary interpolation is not important but a
balanced decomposition is preferred, for reasons such
as partitioning the curve or the mesh into even and
odd vertices. Such a partitioning allows the storage of
coarse vertices and details in even and odd vertices,
respectively, as proposed in [22]. However, some of the
devised balanced multiresolution schemes may support
boundary interpolation only in the context of subdivision
i.e. when we only consider the result of PC0 in order to
increase the resolution of C. For example, the filters of
second order B-spline in Eq. (A.1) and the short filters
of third order B-spline in Eq. (4) lead to such boundary
interpolating subdivisions.

There is a number of directions for future research. In
this article, we covered the commonly used types of
symmetric and antisymmetric extensions. It would be use-
ful to investigate and develop extension types that can be
utilized to devise balanced multiresolution schemes for
near symmetric and asymmetric filter vectors in order to
ensure a perfect reconstruction solely by the use of regular
filters. To start with, the devised balanced multiresolution
scheme given in B for Daubechies’ asymmetric D4 filters
may provide some insights.

In addition, further investigations are needed for an
in-depth understanding of the relations between the
symmetry/antisymmetry exhibited by the filter vectors,
parity of their widths, and the determined types of sym-
metric/antisymmetric extensions required for a perfect
reconstruction using only regular filters. For instance,
compare the multiresolution filter vectors containing
the inverse powers of two filters of fourth order B-spline
in Eq. (18) and the wide and optimal filters of fourth
order B-spline in Eq. (A.3). In these two sets, the
corresponding filter vectors have the same widths and
they are all symmetric. Now, observe that the two
balanced multiresolution schemes we devised using
these two sets of filter vectors suggest exactly the same
type of symmetric extensions for the column vectors of
fine, coarse, and detail samples. Therefore, the deter-
mined types of symmetric/antisymmetric extensions are
not dependant on actual filter values. Several other such
scenarios are shown in Table A.2.

From application’s standpoint, our current imple-
mentation supporting focus+context visualization of 3D
images (see Fig. 15, for example) can be extended by
additionally performing depthwise balanced decomposi-
tions and allowing 3D ROIs that are not necessarily
axis-aligned. These will facilitate a more flexible visualiza-
tion framework for large-scale 3D images.
8. Conclusion

In this article, we presented a novel method for devising
a balanced multiresolution scheme, primarily applicable to
images, using a given set of symmetric/antisymmetric fil-
ter vectors containing regular multiresolution filters. A bal-
anced multiresolution scheme resulting from our method
allows balanced decomposition and subsequent perfect
reconstruction of images without using any extraordinary
boundary filters. This is achieved by the use of an appropri-
ate combination of symmetric and antisymmetric exten-
sions at the image and detail boundaries, correlating to
implicit sample split operations. Balanced wavelet trans-
form of an image constructed through balanced
decompositions provides straightforward and efficient
access to details corresponding to a ROI on demand.

In order to support smooth multiresolution representa-
tions of images beyond Haar wavelets and the associated
scaling functions, and still exploit the advantages of a bal-
anced decomposition, we used our method to devise bal-
anced multiresolution schemes for some commonly used
sets of local multiresolution filters obtained from higher
order scaling functions and their wavelets. Any such bal-
anced multiresolution scheme can be used to generate a
balanced wavelet transform representation of a multidi-
mensional image in a preprocessing phase, which can then
be utilized to support its focus+context visualization in an
efficient manner.

We also presented a set of experimental results pro-
duced using our developed Focus+Context Studio prototype
that allows interactive multilevel focus+context visualiza-
tion of large-scale 2D and 3D images. It exploits the bal-
anced multiresolution scheme we devised from the short
filters of quadratic B-spline in Eq. (4). We envision the
integration of the key functionalities of our prototype in
visualization systems and application programming inter-
faces (APIs) to enable users to visualize and explore the
contents of complex imagery such as large-scale satellite
images, clinical data, seismic data, etc.
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Appendix A. Further examples with symmetric/anti-
symmetric filter vectors

Our first example here involves the multiresolution fil-
ter vectors containing the local regular filters of second
order B-spline,

a ¼ � 1
6

1
3

2
3

1
3 � 1

6

� �
;

b ¼ � 1
2 1 � 1

2

� �
;

p ¼ 1
2 1 1

2

� �
;

q ¼ � 1
6 � 1

3
2
3 � 1

3 � 1
6

� �
;

8>>><
>>>:

ðA:1Þ
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derived by Sadeghi [25] by reversing Faber subdivision [9]
based on the construction procedure presented by
Samavati and Bartels in [26,3]. For the filter vectors in Eq.
(A.1), the matrix equations for a balanced multiresolution
scheme we devised using our method for n 2 Zþ are

and

analogous to Eqs. (1)–(3), respectively.
The next example involves the following multires-

olution filter vectors containing the local regular filters of
cubic (fourth order) B-spline from [28]:

a ¼ � 1
2 2 � 1

2

� �
;

b ¼ 1
4 �1 3

2 �1 1
4

� �
;

p ¼ 1
8

1
2

3
4

1
2

1
8

� �
;

q ¼ 1
4 1 1

4

� �
:

8>>><
>>>:

ðA:2Þ

The filter vectors in Eq. (A.2) are called the short filters of
cubic B-spline. For these filter vectors, the matrix equa-
tions for a balanced multiresolution scheme we devised
using our method for n 2 Zþ are
and

analogous to Eqs. (1)–(3), respectively.
Our last example uses the following multiresolution fil-

ter vectors containing the local regular filters of cubic B-
spline from [28]:

a ¼ 23
196 � 23

49
9

28
52
49

9
28 � 23

49
23

196

� �
;

b ¼ 13
98 � 26

49
39
49 � 26

49
13
98

� �
;

p ¼ 1
8

1
2

3
4

1
2

1
8

� �
;

q ¼ � 23
208 � 23

52 � 63
208 1 � 63

208 � 23
52 � 23

208

� �
:

8>>><
>>>:

ðA:3Þ

The filter vectors in Eq. (A.3) are known as the wide and
optimal filters of cubic B-spline. For these filter vectors,
the matrix equations for a balanced multiresolution
scheme we devised using our method for n 2 Zþ are
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Fig. B.16. Balanced decomposition of 8 fine samples using the
decomposition filter vectors a and b from Eq. (B.1).
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and

ðA:4Þ

analogous to Eqs. (1)–(3), respectively.
In Table A.2, we summarize all the balanced multires-

olution schemes presented in this article so far, in addition
to six other sets of symmetric/antisymmetric regular
multiresolution filters. The biorthogonal and reverse
biorthogonal filters [5,8] we referred to in the table are
available in MATLAB [20].

In the first column of In Table A.2, qR denotes the
reversed filter vector q. The second through fifth columns
specify the symmetric (S)/antisymmetric (A) structure of
the a;b;p, and q filter vectors, respectively, for each set
of filters in the table. The next column mentions the parity
of wa and wb, based on which we decide on the type of
symmetric extension to use for F.

For n 2 Zþ, the second-to-last column of Table A.2 illus-
trates the proposed extended vector of fine sample F 0 and
the construction of the first coarse sample c1 and detail
sample d1, applicable to one possible balanced multires-
olution scheme for each set of filters in the table. Here,
we only give the construction of c1 and d1 because the
remaining pairs of coarse and detail samples can be
obtained by subsequent shifts of the filter vectors a and
b by two fine samples along F 0 (as shown in Fig. 10, for
example). Finally, the last column shows the correspond-
ing extended vectors of coarse samples C0 and detail
samples D0, in addition to the reconstruction of the fine
samples in Fl and Fr as defined in Section 5.2. In this col-
umn, filter vectors of odd and even width are assumed to
have formats similar to . . . v�2 v�1 v0 v1 v2 . . .½ �
and . . . v�2 v�1 v1 v2 . . .½ �, respectively.

Although providing a recipe for choosing the appropri-
ate set of filters for a particular application is not the focus
of this article, here we provide a high-level guideline. To
decide which set of filters is more suitable for a particular
application, a number factors such as smoothness of
results, widths of filter vectors, the number of vanishing
moments of the associated wavelet function, and the sup-
port of underlying basis function are taken into considera-
tion. Firstly, when the visual quality of results is important,
a set of filters that provides higher level of smoothness is
preferred. Secondly, shorter widths of filter vectors imply
faster implementation and if applicable, higher frame rate.
An interactive focus+context visualization application like
the one demonstrated in this article performs more effi-
ciently if the filter vectors are not too wide. For instance,
only one level of balanced decomposition of a
512� 512� 512 image using a width-7 a filter vector in
place of a width-4 a filter vector will take 21� 2563 more
multiplications, incurring a 75% increase in the number of
multiplications required. Next, higher number of vanishing
moments of the associated wavelet function implies wider
filter vectors and lesser smoothness of results. However,
higher number of vanishing moments allows better
approximation of scaling functions, which is desirable in
compression applications. Finally, filter vectors that pro-
vide compact support lead to better local effects, usually
required for applications allowing multiresolution editing.

Daubechies proposed a family of orthogonal wavelets
with the highest number of vanishing moments for some
expected support but it does not allow for the best smooth-
ness [7]. The filter vectors resulting from this work are
asymmetric (see Eq. (B.1), for example). Using a similar
idea for construction, Cohen el al. proposed the first family
of biorthogonal wavelets, which leads to filter vectors that
are symmetric or antisymmetric about their centers [5,8].
The biorthogonal and reverse biorthogonal filters we refer



Fig. B.17. Perfect reconstruction of 8 fine samples using the reconstruc-
tion filter vectors p and q from Eq. (B.1).
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to in Table A.2 resulted from this work. On the other hand,
the B-splines filters in Table A.2 are developed by Samavati
et al. based on reverse subdivision [26,3,28]. Filters of
higher order B-spline produce smoother results. The
associated construction procedure starts by setting the
width of the decomposition filter vector a, where wider a
results in better coarse approximations. Constraints can
be set in the construction procedure such that the resulting
coarse approximations are smoother. For instance, Sadeghi
and Samavati proposed smooth reverse subdivision for
obtaining smooth coarse data through decomposition
[31,32].
Appendix B. An example with asymmetric filter vectors

An attempt to apply our general approach for devising a
balanced multiresolution scheme described in Section 5 to
Daubechies’ asymmetric D4 filters [7,29],

a ¼ p ¼ 1þ
ffiffi
3
p

4
ffiffi
2
p 3þ

ffiffi
3
p

4
ffiffi
2
p 3�

ffiffi
3
p

4
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2
p 1�

ffiffi
3
p

4
ffiffi
2
p

h i
;

b ¼ q ¼ 1�
ffiffi
3
p

4
ffiffi
2
p �3þ

ffiffi
3
p

4
ffiffi
2
p 3þ

ffiffi
3
p

4
ffiffi
2
p �1�

ffiffi
3
p

4
ffiffi
2
p

h i
;
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produces the balanced decomposition setup shown in
Fig. B.16 and the perfect reconstruction setup shown in
Fig. B.17. Note that it introduces two extraordinary bound-

ary filter values, �2þ
ffiffi
3
pffiffi
2
p and 2þ

ffiffi
3
pffiffi
2
p in the reconstruction of f 1

and f 8, respectively. Because the filter vectors in Eq. (B.1)
are not symmetric/antisymmetric, the rewriting task
suggested in step 2(c) and that of step 3 in our general
construction given in Section 5.2 were not entirely success-
ful. Therefore, our approach could not ensure a perfect
reconstruction using only the regular filters from Eq. (B.1).

As we observe in Fig. B.17, this particular example does
not require any extraordinary boundary filters for the
subdivision matrix P. This may not always be the case
while using other asymmetric filter vectors.
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