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Abstract 
 
The limitations of human perception make it impossible to grasp 
four spatial dimensions simultaneously.  Visualization techniques 
of four-dimensional (4D) geometrical shapes rely on visualizing 
limited projections of the true shape into lower dimensions, often 
hindering the viewer's ability to grasp the complete structure, or to 
access its spatial structure with a natural 3D perspective.  We pro-
pose a mobile visualization technique that enables viewers to bet-
ter understand the geometry of 4D shapes, providing spatial free-
dom and leveraging the viewer’s natural knowledge and experi-
ence of exploring 3D geometric shapes.  Our prototype renders 3D 
intersections of the 4D object, while allowing the user continuous 
control of varying values of the fourth dimension, enabling the 
user to interactively browse and explore a 4D shape using a simple 
camera-lens-style physical zoom metaphor. 
 
CR Categories: H.5.1 [Multimedia Information Systems]: Artifi-
cial, augmented, and virtual realities; H.5.2 [Information Interac-
tions and Presentation]: User interface 
 
Keywords: User interface; mobile interface; high dimensional 

visualization; visualization 
 
1 Introduction and Motivation 
 
- “Maybe they are to you, brother, but they still look crooked to 
me” 
- “Only in perspective, only in perspective.” 

Robert A. Heinlein’s And He Built a Crooked House [2] 
 

There are several existing approaches to visualize 4D geometric 
objects, including Projection (Parallel, Perspective, or Stereo-
graphic), Slice, and Depth Cue (Figure 2).  Though these tech-
niques can display 4D objects in a relatively straightforward and 
informative way, they require a steep learning curve and experi-
ence to fully understand the components of the visualizations (how 
the vertices, edges, faces, etc., are related).  Ultimately, we argue 
that the understandability of these techniques is limited, as the 
geometric representations do not match our natural perception and 
experience; they, as Heinlein’s character complained when ob-
serving the design of a 4D house,  “look crooked.” 
 
One limitation of presenting 4D geometric objects is that they are 
projected onto 2D surfaces (e.g., paper or a display).  Our goal is 
to capture as much of the original geometric structure as possible 
while minimizing destruction of perspective or loss of infor-
mation, although a perfect mapping is impossible due to the limits 
of human perception.  In general, traditional approaches, along 
with their animated variations rendered in computers (Figure 3), 
either remove one or more dimensions to show an incomplete 
geometric structure (e.g., the Slice technique), or error is intro-
duced into a shape’s perspective by squeezing 4 dimensions into 2 
(e.g., as with all Projection techniques and Depth Cue) (Figure1 
left, Figure 2).  While such losses of information may be accepta-
ble for simple geometric objects such as a Simplex (4D triangle), 
more complex shapes lead to larger error or information loss in 

Figure 1: (left) a traditional approach to view a 4D shape at different points along the fourth dimension. The user must mentally process 
the 3D shape on 2D paper, and extrapolate between the displayed figures to understand the 4D shape; (middle) our approach allows uses 
to explore projections of 4D shapes in full 3D with a natural perspective; (right) the fourth dimension, not present in our spatial percep-
tion, can be adjusted continuously with a tangible interface. 
 



consequence, hindering the visualization. For instance, the details 
of the Tesseract (4D cube, shown in Figure 2) are clear, but with 
traditional visualization techniques, complex shapes such as the 
24-cell (Figure 1 left) are much more difficult to parse. 
 

Our solution for visualizing 4D geometric objects uses a combina-
tion of a camera-lens-style physical input (Figure 1 right) and a 
mobile looking-glass-style display: the mobile display enables 
users to naturally observe the 3D intersections of the original 4D 
shape in the higher dimension while benefiting from spatial free-
dom, i.e. being able to explore it from any arbitrary view angle, 
while simultaneously exploring the fourth dimension by control-
ling a physical device.  We use a camera metaphor, where a per-
son looks through the camera to view the 4D object, and turns the 
zoom ring on the lens to shift the visualization along the 4th di-
mension.  For the remaining spatial dimensions, our technique 
does not require any inherent dimension reduction or perspective 
distortion, which minimizes the abstraction of the original struc-
ture, and viewers are in full control of the exploration. We de-
scribe our prototype below. 
 
2 Related Work 
 
Visualizing the geometric structure of different dimensionalities in 
intuitive and understandable ways has a long history spanning 
literature [1][2] to geometry [3][4].  Computer graphics and ani-
mation techniques [5][6][7] later enabled viewers to interact and 
manipulate a 4D shape in its digital form [8][9] or even the physi-
cal form [10][11]. The contribution of these existing techniques is 
how they simplify or predigest complicated 4D geometric struc-
tures.  However, manipulating those 4D shapes by decomposing, 
unfolding, etc., inevitably incorporates a certain kind of dimension 
reduction and perspective distortion. 
 
In this paper, we propose a technique that enhances the under-
standability of 4D shapes by reducing structural abstraction, and 
leverages users’ natural exploring experience. 
 

3 Metonymy and Design intuition 
 
Before diving into the unintuitive 4D world, let us first simplify 
the story by imagining how people living in a 2D world, as Edwin 
A. Abbott described in his novel “Flat- land” [1], visualize imagi-
nary 3D geometric objects in an intuitive method.  We keep the 
anatomic basis of the “Flatlanders” (2D people living in a 2D 
world) as in the original novel, but with 21st century technology. 
  
In Flatland, 1D materials are used to preserve information (paper, 
book, display screen), and Flatlanders have no difficulty under-
standing and reasoning about 2D structures, just as we are fully 
capable of appreciating the 3D world even though our display 
mediums are usually 2D (paper, book, display screen).  Flatlanders 
have no concept of “up” and “down” along their theoretical z-axis, 
so when studying 3D geometry, they must look at 2D projections 
or slices of 3D objects.  Conceptually, Figure 4 shows how a se-
quence of Slice graphs look like in a Flatlander textbook (1D piec-
es of paper) that introduces a 2-sphere (surface of ball), which is a 
3D object and a hyper-object for Flatlanders.  

 
By only observing discrete “key frames” (the slices or projections) 
along the hyper-dimension, Flatlanders may find it hard to mental-
ly reconstruct the continuous geometric shape because they cannot 
perceive a z-axis.  In Figure 4, the key frames are 2D projections 
of the 3D hyper-object, shown as individual circles, but they need 
to be further abstracted in order to fit into 1D display mediums in 
Flatland. 

 
Fortunately, in this 2D parallel universe of ours, virtual 2D objects 
can be illustrated situated at a fix position, allowing Flatlanders to 
walk around it with 1D “see-through device” and observe it in the 
Flatlanders’ natural 2D perspective, as if a physical 2D entity is 
being displayed (Figure 5).  This idea is similar to “augmented 
reality”, as a virtual object is “pinned” at a fixed position in the 
space, allowing people to observe it while maintain spatial free-
dom.  However, we use the term “visualization” rather than “aug-

Figure 4: slice graphs of a 3D object on a Flatland textbook 

Figure 3: typical interactive interface of 4D objects, in which all 
controls upon the hyperspace are operated on a 2D screen, in 

addition to the complicated camera manipulation 

 

Figure 2: visualization of a Tesseract with existing methods; 
(from the left) Parallel Projections, Slices, and Depth Cue [12] 

 

Figure 5: “Augmented reality”-like visualization in “Flatland” 



mented reality” because in a hyperspace there is no “reality” for us 
to augment. 
 
To illustrated 3D hyper-objects, the Flatlanders extract one of the 
axes, the z-axis in our story, from the hyperspace. At any z-value, 
the corresponding x-y space contains a 2D intersection of the orig-
inal 3D shape, just like for a regular 2D object spans in the xy-
space, any given x-value corresponds to a y-value.  Here any 2D 
intersection can be illustrated with the aforementioned “augment-
ed reality”-like visualization, providing full spatial freedom to take 
advantage of Flatlander’s natural perspective, enabling them to 
explore the 3D shape with a spatial experience that is similar to 
how they explore their own 2D world every day (Figure 5). 
 
The crucial piece of the puzzle is to design an informative method 
of letting Flatlanders manipulate the hyper-axis with their hands 
(or tentacles, depending on what they have), without overlapping 
or interfering with any physical axis — the x- and y-axis in Flat-
land — in order to maintain a natural viewing experience.  We use 
a camera metaphor:  a photographer moves in space to point-and-
shoot, and can adjust the aperture to change the focal depth, con-
sidering focal depth as an extra dimension.  Flatlanders adopted 
the metaphor of the camera lens as a physical interface to update 
the z-value dynamically.  Thus, “focusing” the camera lens chang-
es the z-value of the corresponding 2D intersection (circles) of a 
3D shape (sphere) in real time (Figure 6). 
 

Another goal is maintaining a sense of continuity of the hyper-
object, or how the hyper-object will change while browsing along 
the z-axis. In order to help maintain an overall understanding of 
the original geometric structure, we display key frames as ghost 
images at selected z-values (dashed lines in Figure 6).  In other 
words, the Flatland user always knows how the object would 
change after increasing or decreasing the z-value.  This removes 
the need to constantly rotate the lens, and rotation becomes a tool 
that provides continuous visualization to link the dots together, 
helping the Flatlanders understand how the hyper-shape changes 
in between the key frames. 
 
In summary, by using the aforementioned visualization technique, 
a hyper-object’s x- and y-axis, the real spatial dimensions in Flat-
land, are preserved without any perspective distortion and can be 
observed with their natural spatial freedom.  Perception and ma-
nipulation of the additional hyper-dimension, the z-axis, is deliv-
ered by physical interactions with continuous illustration.  In this 
way, all spatial awareness of the 3D hyper-object is preserved. 
Also we designed the manipulation of the hyper-dimension to be 

separated from the fundamental, or “real”, x-y space, so that ex-
ploring the hyper-object won’t be confused with updating the z-
value.  Hence, both of our goals, which are no dimension reduc-
tion and perspective distortion, are achieved, and Flatlanders may 
better understand the essence of a hyper-dimensional 3D object 
and live ever happily after. 
  
Now let us travel back to our 3D world and apply the same ap-
proach; that is, use a similar concept to illustrate a 4D geometric 
structure, spanning 3 fundamental spatial dimensions plus one 
hyper-dimension, with no dimension reduction and perspective 
distortion, in order to provide a more intuitive yet informative way 
to appreciate a given 4D geometric object. 
 
4 Implementation 
 
We use an iPad Air as the “looking glass” device, and the applica-
tion is implemented with the Qualcomm Vuforia library.  A physi-
cal marker is used to situate the center of the rendering in the real 
world.  The device captures both the location and orientation of 
the marker and renders virtual images correspondingly, as if a 
physical model has been placed on the marker. 
 

To demonstrate the system, we use a 24-cell, a regular polytope in 
4D with 24 octahedral cells, 96 triangular faces, 96 edges, and 24 
vertices.  Due to the complexity of its geometric structure, it is 
very difficult to understand it with traditional projection tech-
niques.  Also, it will be very dense to display all the vertices, edg-
es, and faces in a surface of a limited size (Figure 7). 
 
Similar to our Flatland story, the w-axis in the 4D space is extract-
ed and the user is enabled to adjust its value.  Then, the remaining 
3 dimensions (x, y, and z) span a regular 3D space.  At any given 
w-value, it is guaranteed by our design that the corresponding 3D 
intersection can be illustrated without visual distortion, with all the 
spatial information and freedom maintained (Figure 8). 
 

Figure 6: “augmented reality”-like visualization allows 
Flatlanders to change the hyper-axis dynamically 

Figure 8: illustrate 3D projections at any given value on the 
hyper-axis with a natural perception 

Figure 7: Traditional approaches to visualize a 24-cell 



Moreover, we also constructed a camera lens-looking physical 
interface with a Phidgets rotation sensor mounted at the back of 
the tablet, providing the aforementioned pseudo-camera experi-
ence of interaction (Figure 1 right).  While walking around the 
visualization of the 3D model situated at the marker, the user can 
rotate the lens to increase or decrease the w-value, triggering the 
embedded rotation sensor to update the w-value and the rendered 
3D intersection accordingly.  As the w-value varies, the smooth 
real-time transformation of the 3D intersection gradually delivers 
the idea about the overall geometric structure of the original 4D 
shape to the user (Figure 9), as Flatlanders see the expansion and 
contraction of the circle and receive a better understanding of the 
sphere. 
 
Key frames, represented as ghost images, are also provided at a 
few selected values (w = -100%, -50%, 0, 50%, 100% of the val-
ue), to give the user a hint of how the particular 3D intersection 
will look after increasing or decreasing the w-value without 
changing the lens physically.  Theoretically, in 4D, these 3D key 
frames are stacked together like nested dolls, as circles with dif-
ferent radii are positioned at the same center to present key frames 
of a sphere in the “Flatland” story (Figure 6).  However, when 
many ghost images overlap, it becomes chaotic and difficult to 
look at (remember, in the “Flatland” story we looked at stacked 
circles from the third, hyper dimension of their world); thus, we 
distribute those key frames in a row. The 3D intersection is always 
situated at the center of the display area, while key frames shift 
linearly based on the magnitude of the change such that a corre-
sponding key frame coincides with the intersection when both w-
values are equal (see ghost images in Figure 9). 
 
5 Critique 
 
We have run a primarily critique session with a small group of 
participants who have higher education background but not ma-
jored in Mathematics.  We selected such a target group due to their 
sufficient knowledge of Mathematics and Geometry but not too 
much familiarity with hyperspaces. 
 
All participants are able to operate our prototype application inde-
pendently after a very short training.  Participants reported that the 
“augmented reality”-like observation mechanics are easy to per-
form and relieve them from tedious and complicated camera ma-
nipulation, which is what they commonly deal with on regular 
display screens.  Also, participants understood the camera lens 
metaphor instantly and had no difficulty operating it, which is the 
original purpose of our design. 
 

In summary, participants thought the application was “fun”, “con-
trollable”, and “straight-forward”, and helping them to obtain the 
basic spatial knowledge of 4D geometric structures with experi-
encing a “less steep learning curve”.  Moreover, besides improv-
ing perceptual easiness, the freedom of maneuvering and applying 
natural observations made them feel “more confident and master-
ful”, and such a psychological influence is beyond our expectation 
and we are interested in interpreting it in our future experiments. 
 
A formal study will be necessary for more insight, but even this 
small critique session suggests the potential of the system as an 
easy to use, tangible interface to explore hyper-objects. 
 
6 Conclusion and Future Work 
 
We present a mobile prototype visualizing 4D geometric objects 
using a physical camera-like interface.  We consider the following 
directions for future exploration. 
 
One thread will be applying the same concept to more irregular 
and complex 4D geometric structures, in addition to the symmetric 
4-manifolds that we used to validate our concept in this paper. 
 
Another avenue is higher dimensional visualization. Our method 
may be scalable to visualizing geometry in 5, 6, or more spatial 
dimensions, or maybe even a space-time such as the Minkowski 
space-time continuum.  If the simplicity and comprehensibility of 
our method decreases in these cases, then we need to explore ex-
tending the technique to maintain its characteristics in these deeper 
hyper-dimensions. 
 
We would like to evaluate our prototype via a user study, collect-
ing qualitative and quantitative data related to the intelligibility of 
the method when observing and studying a 4D geometric object or 
structure compared to traditional visualization techniques, or even 
the pure text-base notations that only make sense to experts.  Fur-
thermore, it will be interesting to observe two participant groups 
with different expertise level use our tool, one with sufficient 
amount of mathematical knowledge and one without, and see 
whether our interface provides additional insight to either of the 
groups. 
 
In summary, we presented a new method to illustrate and interact 
with 4D geometric objects.  We carefully designed the visualiza-
tion to provide the user with a familiar visual representation of the 
3D intersection of the object without distortion, enabling free spa-
tial exploration, and allowing the fourth hyper-dimension to be 

Figure 9: changing the value along the hyper-axis with the tangible interface continuously and dynamically; key frames are provided 
as faded 3D intersections to aid the user in the visualization of the continuous hyper-object. 



controlled and manipulated by the user who is continuously and 
dynamically updating the 3D intersection. 
 
We hope that our method and prototype could set the stage and 
inform future research on this topic, potentially bringing this de-
sign concept to help illustrate high-dimensional scientific infor-
mation. 
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