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Abstract

Transient well test data conveys significant information about the subsurface heterogeneities in terms of
some variations in the well test pressure response curves. It is therefore important to enhance the use of
the well test data for building a validated geological model to include the effective reservoir heteroge-
neities that are reflected on the well test plots. In this work, we present a novel geoengineering workflow
for geologically consistent updating of the geostatistical facies models using pressure transient data.

We use Multi-Point Statistical (or Geostatistical) simulations (MPS) with conditioning hard and soft
data to generate the geostatistical realizations that can preserve the spatial connectivity of the facies. Static
model transient tests are then generated using high resolution numerical simulations. The results are
compared with the measured well test data for an inversion. The inversion step involves a geologically
consistent Probability Perturbation Method (PPM) for perturbing the geostatistical models which are
combined with a Gaussian Process (GP) modeling approach for finding the optimum spatial distribution
of the facies and the other unknown model parameters. Conditional two-dimensional models of a
low-energy anastomosing channelized model are considered in this study. The results show that using
such an approach the spatial variation of the facies is maintained and the transitions across the facies
boundaries are consistently preserved. In this paper, the geostatistical models are updated simultaneously
with other unknown model parameters, including the PPM’s parameter (r), facies permeabilities and the
non-Darcy D-factor. This multidimensional inversion is efficiently performed by GP in less than 100
compositional simulations. The novelty of this work is to efficiently use the well test data for updating the
static models in a fluvial reservoir using a perturbation of the geological models. Moreover, for the first
time, a novel optimization method is combined with PPM to consistently update the model parameters
with a limited reservoir simulation budget.

Introduction
Transient well testing has traditionally been used to match some simplified mathematical models to the
measured pressured data. This provides a good insight into the average properties of the reservoir close
to a well (Landa et al., 1996). Nonetheless, the correct well test data interpretation requires the full
integration of multi-domain and multi-source information (Kuchuk et al., 2010). However, the underlying
assumptions of analytical models, which typically address the statistically homogeneous reservoirs, do not



allow the full translation of the interpreted results between the well testing and other disciplines such as
geology and geophysics. Furthermore, the developed analytical models are very limited and are not able
to fully describe the complex reservoir heterogeneities. Even if the analytical interpretation gives an
average single-point result over heterogeneities, it is crucial to incorporate the dynamic behavior into
reservoir characterization. The scope of well testing has evolved from mainly a parameter estimation
technique to a more sophisticated discipline for reservoir description (Du and Stewart, 1992). Such
advancements clearly require the use of numerical models to simulate transient well test simulations for
complex geological scenarios. The term �geological well testing� (Corbett et al., 2012; Hamdi, 2012) is
referred to the numerical simulations of well tests by setting up the detailed geological models (Massonnat
and Bandiziol, 1991; Corbett et al., 1996; Zheng et al., 1996; Corbett et al., 2010). This approach is
basically a forward modeling method used in well test designs to understand the impact of the hetero-
geneity on the well test curves. However, in practice, the existence of the considerable uncertainties in the
measurement data, and lack of comprehensive conditioning spatial data urges the development of
geology-assisted matching approaches to calibrate the geological model against the well test data (i.e.
‘dynamic’ data). It is therefore required to efficiently generate and sample the model properties (i.e. facies,
porosity, permeability, etc.) using available ‘static’ and ‘dynamic’ data. This process requires an assisted
history matching process (Denney, 2008). The common methods for changing the reservoir model are
usually manual that are endeavoured to achieve by simply multiplying a bulk of cell properties with some
constant values. Such approaches are not favourable as they are cumbersome and most importantly the
framework of the underlying geology will not be honored. Therefore, this task not only requires (1) an
effective numerical optimization framework to automatically and efficiently vary the reservoir parameters,
but also requires (2) a geologically consistent process that can preserve the essential geological knowledge
of the reservoir model that is captured in the training image.

To the best of our knowledge, the use of well test data in the numerical studies for quantitative
integration with reservoir characterization has been limited and qualitative (Landa, 2009). For instance,
Hu (2000) used a Gradual Deformation (GD) method to revamp the Gaussian-based reservoir models to
match the well test responses. However, GD relies on the Gaussian assumption to combine two Gaussian
models and does not always lead to a �correct� sampling of the posterior distribution (Caers, 2007). Li et
al. (2010) and Han et al. (2014) used the Ensemble Kalman Filter (EnKf) to integrate well test data for
the reservoir characterization. However, the linear assumption between measurements and model param-
eters as it is presumed in EnKf can be problematic. In EnKf the finite ensemble size can create false
correlations. A representative spread should be preserved between the ensemble members to avoid
excessive variance reduction which this requires a larger ensemble size and a higher computational cost.
Additionally, when the Gaussian assumption is violated, poor uncertainty measure is expected (Heidari et
al., 2013). Recently, Hamdi et al. (2015a) employed a two-point geostatistical method (Deutsch, 2002)
and used the Differential Evolution algorithm (Price et al., 2005) to calibrate a fluvial reservoir model
using well test data. However, the use of two-point geostatistics is limiting where the geobody connec-
tivity cannot be preserved in presence of sparse condition hard and soft data.

Multi-Point Statistical (MPS) modeling is an alternative approach to construct the complex geological
heterogeneities to better preserve the spatial shape and the connectivity of reservoir facies (Corbett et al.,
2012). The MPS can reduce the artifacts and can honour any conditioning data. For building the MPS
models the variogram models are replaced by the training images depicting the expected subsurface
heterogeneities (Strebelle and Journel, 2001). The training image should be large enough and contains
enough replicates that conveys the conditional probabilities. This is to ensure sound geological features
with acceptable geometries are reproduced from the MPS simulations. The training image carries the
statistical relation of the reservoir facies in more than two points in the reservoir. A training image can
be any conceptual model, a seismic-driven map, a digitized satellite image or an outcrop analogue. The
training image is scanned by a template or window to store the conditional probabilities. The MPS
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approach is based on a sequential algorithm and follows a random path (controlled by a random seed) to
assign the reservoir grid facies to create an MPS realization. An example of using MPS in geological well
testing is given by Hamdi et al. (2014b) where they used the multi-point geostatistics to update
geostatistical realization using a manual engineering-based hybridization algorithm. However, this ap-
proach is also limiting, as the manual history matching can be cumbersome when we have a large number
of facies with complex interactions. Therefore, there is a gap to use multi-point geostatistical techniques
in an automated manner to enhance the use of well test data in the reservoir characterization step.

Probability Perturbation Method or PPM (Caers, 2004) is a unique data integration technique that uses
the functionality of MPS modeling to perturb the MPS models in a geologically consistent way. PPM is
a �data integration� method that can integrate prior information with other available data. This method
relies on the Journel’s tau-model (Journel, 2002) to integrate various data types, each of them being coded
into a probability formulation (Caers, 2007). PPM has been successfully used in some uni-dimensional
inverse problems (Hoffman and Caers, 2005; Hermans et al., 2013). An alternative to PPM is �probability
conditioning method� (Jafarpour and Khodabakhshi, 2011) where a soft probability can be used to perturb
the realizations. However, the stochastic search algorithm of PPM is probably the best method that can
perturb and generate the posterior MPS realizations (Caers et al., 2006; Park et al., 2013) without
additional costs that involve in other sampling-based methods such as Metropolis sampling (Mosegaard
and Tarantola, 1995). Although PPM has originally been developed for discrete properties, Hu (2008)
modified PPM to also include the continuous variables. However, in this paper we only consider PPM to
generate and perturb discrete values of the spatial facies realizations.

The use of PPM for quantitative use of well testing in reservoir characterization is treated as an inverse
problem. The original PPM includes an outer and an inner loop to search for a realization that can
reproduce a dynamic response as the measured data. The outer loop changes the random seed (i.e. creates
a new realization), and the inner loop only involves with changing one real variable (r) that controls the
perturbation of a reference MPS model. The inner loop is intrinsically a 1D history matching problem
which is not computationally expensive to solve. However, when the history matching problem involves
with the other parameters such as porosity, permeability, skin factor, etc. the dimensionality of the
problem increases which makes the problems more challenging to solve (i.e. the curse of dimensionality).
For such situations, an efficient optimization algorithm is sought. Two main categories of algorithms exist
in the literature to tackle the non-linear history-matching problem. These include gradient-based algo-
rithms (Slater and Durrer, 1971), and population-based approaches (e.g. genetic algorithm (Romero et al.,
2000)), differential evolution (Hajizadeh et al., 2009), estimation of distribution algorithms (Abdollahza-
deh et al., 2013)). However, the gradient-based algorithms cannot guarantee to find the global solutions
and the population-based methods require a large number of simulations. These two shortcomings impose
critical limitations as the reservoir models are commonly non-linear and can have many local solutions.
Besides, the computational costs of large reservoir models is an obstacle to run a large number of reservoir
simulations. Fortunately, there have been some developments in stochastic inversion techniques that are
based on some surrogate techniques that only need a limited number of costly function evaluations
(simulation runs). Gaussian Process (GP) (Rasmussen and Williams, 2005) is a global optimization
technique from this category that has shown great potentials, mainly in high dimensional problems. GP,
also known as multi-dimensional kriging, is a black box global optimization technique that is used for the
optimization of the costly functions where we can only afford to perform a limited number of function
evaluation. The application of GP as a global optimization tool is new to reservoir engineering (Hamdi
et al., 2014a; Hamdi et al., 2015b). In the GP approach, an experimental design is used to generate some
models from the parameter ranges (training data) to perform well test simulations. A GP surrogate model
(or equivalently a multi-dimensional kriging model) is built to represent the well test simulation outputs.
The GP is used to propose a sample location (i.e. a set of unknown parameters) that can potentially have
the lowest misfit. The proposed sample is passed to the actual simulator. If the acceptable match has not
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been acquired, the initial sample pool is augmented by the recent simulated sample and the process
repeated until convergence happens or the maximum number of simulations has been reached.

In this paper, it is aimed to calibrate the reservoir models using the pressure buildup well test data by
GP inversion for a combination of unknown well/reservoir parameters involving the perturbation param-
eter r. The seed number will be changed in an outer loop if an acceptable match is not achieved.

Method
PPM

In the PPM method, we are trying to find and combine various probability information using Journel’s
formulation (Journel, 2002) within the MPS algorithm. As such, if p(Am) is the marginal or the overall
proportion of an event Am (such as having a facies fm) that occurs independently of the locations, the MPS
algorithm can generate p(Am|B). This being the probability of having facies fm in the grid cells by
knowing some additional information (i.e. hard data). Moreover, PPM can give p(Am |D) that is the
probability of having facies fm in the grid cells given the dynamic data. Consequently, the Journel’s model
is used to provide a straightforward method to combine these probabilities to generate a new MPS
realization. In PPM, a new model mnew is obtained as mnew � f(r, m0) in which m0 is an initial MPS
model that is perturbed using a real value 0��r��1. The coefficient r is used to generate a probability
cube that (in combination with the MPS p(Am|B)) creates new soft data for generating a new model mnew

i.e. p(Am |D) �(1 � r)�i(0)(u, fm) � r�p(Am), in which, subscript m is an integer represents facies�1,
2,. . .M, Am denotes {i(0)(u, fm)�1} and i(0)(u, fm) is an indicator model corresponding to the initial
realization m0 which is defined as follows (Hoffman, 2005):

(1)

It should be noted that, if r�0, then p(Am |D)�0 or 1, and if r�1 then p(Am |D) � p(Am) � [0,1]. It
is also noted that m0 by itself is a function of a random seed. This random seed is used to generate an
individual equi-probable geostatistical model that itself can be perturbed using PPM and r. Figure 1 shows
that with the use of PPM, we can generate multiple reversible realizations with only varying r.

The value of r therefore, regulates the perturbation from one prior model to another model. Moreover,
if variation of r cannot provide the same dynamic response as the measured data, the initial model m0 is
replaced by another equi-probable model by selecting another seed number. Note that although the seed
number represents an initial realization of the model, it cannot be used to generate dependent realizations.
In other words, the seed number can generate a random walk on the reservoir grid to fill with some
discrete facies values, and therefore, the model generated by seed i for instance, is not a perturbation of
the model with seed i-1.

GP
Optimization using GP modeling is performed with a premise that a prior distribution over any finite

number of simulations’ misfits is multi-Gaussian. Hence, the output or the misfit value (y) can be written
as y�f(x)�� with f(x)~N(h(x), �), in which x��d is a d-dimensional vector of unknown parameters

Figure 1—PPM is used to perturb an initial MPS model (r�0) and generate new MPS models (e.g. r�0.5 and r�1).
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(input), N represents a multi-Gaussian distribution with a mean h(x) and a covariance matrix �. � is a
Gaussian random noise ~N(0, �2

n). The function f is usually decomposed into a regression function h(x)
(that is frequently assumed to be a constant global mean �) and a simple Gaussian process Z(x) (that is
a deviation from the global mean �) with a mean 0, a covariance matrix � that has a variance �2 i.e.
f(x)���Z(x) ��. If we ignore the random noise, we can say that for any given x, f(x) is a sample drawn
from ��N(0, �). Additionally, the correlation between Z(x) and Z(x=) only depends on |x-x=| that for a
popular choice of a squared exponential covariance function can be calculated as (Rasmussen and
Williams, 2005):

(2)

in which, xi is a simulation model parameter from the sample array x, and�i is a parameter that shows the
importance of xi on f(x).

To build the prior GP model, we need to generate an initial set of parameters X�{x1, x2, . . .xn} from
an experimental design such as Latin Hypercube and perform forward simulations to obtain the corre-
sponding misfit values Y�{y1, y2,. . ., yn}. We use this training dataset to estimate the GP hyperparemters
(�i, � and �2) by maximizing theLikelihood that f(x�xj)�yj. When the hyperparametrs are obtained the
Bayesian inference can help obtain a posterior f(x*)|f(X)~N(�*, �*2) i.e.

(3)

(4)

The optimization process using GP modeling is to use the current training data set {X, Y}, fit a prior
GP model, and use the Bayesian inference to find an x* that can maximize an improvement (I(x*)) (infill
criteria) that we can achieve from the current lowest value of the function (ybest). At this stage, no flow
simulation is performed, the GP emulator is used to propose this potential point. When this point is found,
the actual flow simulation will be performed and the newly simulated point {x*, y*} will be added to the
current training data and the process will be repeated again until a convergence criteria is achieved. The
expected improvement function or the infill criterion is defined as (Jones et al., 1998)

(5)

in which, E is the mathematical expected operator, � is the cumulative density function of standard
normal distribution and � is the probability density function of standard normal distribution. The first and
the second terms of the above equation promote the exploitation and the exploration of the GP
optimization algorithm respectively. The convergence of the GP algorithm is measured using a regret
function that in our case is equal to the current best model with the lowest misfit in each iteration.

Results

Truth case
The example presented in this paper corresponds to the use of well test data in calibrating the geostatistical
models in a 2D channelized reservoir model. The training image (TI) is obtained by digitizing the major
facies from a satellite image of a section of Magdalena River in Colombia (Figure 2). The training image
has 164�203 cells in x and y directions respectively. The training image size is large enough to reproduce
the facies shapes and interactions. The training image for this fluvial environment includes four facies
ranging from high-quality coarse sand to shale deposits. For this example, it is assumed that the global
proportions of the facies are reflected in the facies fractions in the training image.
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The training image (TI) is scanned using a circular template, which can better reproduce the shape even
though the training image pattern is anisotropic (Schlumberger, 2012). Although there are some methods
that can help find an optimum size of the template (e.g. using the maximum entropy concept as
documented by Lyster and Deutsch (2006)), the size is usually obtained by a trial and error approach. In
this example, the template size was selected as 50�50. This size was determined after many trials where
the continuity of the resulting MPS facies was visually checked using different template radii.

To simulate an MPS model a 2D grid with similar dimensions as the TI (164�203) is assumed. Each
cell of the reservoir measures a reservoir volume of 10ft�10ft �100ft. By taking the facies data for every
40 cells in the TI in both x and y directions as well as the grid cell that contains the subject well (i.e. the
middle of the reservoir), a set of hard data is generated. The assumed soft data or the probability map for
any facies fm is obtained by employing a smoothing window on the i(TI)(u, fm). Figure 3 shows probability
maps for various facies that are used within the MPS algorithm.

The soft and hard data sets are used to generate a single MPS model using an individual seed number
of 211171. The resulting model is perturbed using PPM with r�0.63. The well test response of a fully
penetrated vertical well that is placed in the middle of the model is simulated using a commercial reservoir
simulator (tNavigator). The well is put under a constant surface production rate of 1000 Mscf/day in an
under-saturated gas condensate fluid system lasting for 8 days that is then followed with a buildup period
of 24 days. The initial reservoir pressure is 5500 psia that is well above the dew point pressure (3733 psi)
and is maintained during the well test simulations. This model serves as a real reservoir (or a truth case)
and its corresponding well test response is considered as the real measured well test data. The truth model
and its seed number are blinded and we try to find a model that can reproduce a well test response similar
to the truth model. The real reservoir parameters for the truth model are listed in Table 1. The porosity
values of the facies are kept unchanged, i.e. �shale�0.01, �silt�0.05, �corase sand�0.2 and �fine sand�0.1.

Figure 2—left: The satellite image of a small section of Magdalena River in Colombia (Google ErathTM), and right: its corresponding 2D
training image

Figure 3—The probability maps for various facies (soft data).
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Figure 4 shows the facies model (Figure 4: left) of the truth case and its corresponding well test
response (Figure 4: right). The well test derivative response shows an apparent radial flow regime with
a zero slope line that is followed by a rather long ¼ slope trend line and a final ½ slope trend line. The
radial part represents a permeability of around 8 md and a skin factor of 3.5. Both of these values do not
correspond well to the values of the skins and the facies permeability used in the truth model. The main
reason for this is that the well is located next to a low permeable boundary and the well test response does
not record the early times (�0.01 hr) and therefore, the values do not correspond completely to the actual
skin and the permeability value. This example shows that the analytical well test interpretations should be
used with great care to include the interpretation uncertainty for the reservoir engineering applications that
require rather accurate reservoir parameters’ estimations. The ¼ and ½ slope trend lines are also difficult
to relate with a representative analytical model. Therefore, the purpose of this study is to promote the use
of numerical interpretation to characterize a reservoir model that honors the measured static and dynamic
data.

Figure 5 shows the streamlines in different timesteps during the production in the truth model. The
figure displays that after 0.1 hr the diffusion front created by the subject well has reached a tight boundary
in its right (Figure 5: left). In the later times, the front will propagate in the reservoir with the preference
to diffuse in the high permeable rocks (Figure 5: middle and right). The anisotropic growth of the diffusion
front in this case can highlight the critical assumption of the analytical methods where a homogenous
model with isotropic circular expansion of the fronts are presumed in almost all calculations.

Table 1—The truth model and parameter ranges used in this study.

Parameters Ranges Truth case

Kshale 0.001 (fixed) 0.001

X1: Ksilt [0.001,0.1] 0.01

X2: Kcoarse sand [10-1000] 100

X3: Kfine sand [1-100] 10

X4: Non-Darcy D-factor [1E-5,0.1] 5E-3 day/Mscf

X5: r [0,1] 0.63

Figure 4—The truth case facies model (left) and its corresponding buildup pressure response (right).
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Inversion
The GP modeling approach is coupled with the PPM to set an inversion framework for the reservoir
description using well test data. In this example, we generate an initial population of 20 models sampled
from the parameter space using Latin Hypercube experimental design. The GP is set to run for 4 trials
(each with different initial populations and seed numbers), where each trial is also limited to 100 reservoir
simulations. The misfit function (M) is defined over buildup timesteps as follows:

(6)

where, 	p�pws-pwf@tp, tp is the production time prior to buildup, pws is the shut-in pressure, pwf@tp is
the wellbore pressure at the shut-in time, the bar sign represents the arithmetic mean, 	pder is the Bourdet
derivative (Bourdet, 2002), and the superscripts truth and sim correspond to the well test responses of the
truth and the simulated models respectively. The log-log plot of 	p and 	pder vs time is sensitive to the
permeability and the lateral variations of the facies, and the Cartesian plot indicates overall quality of the
match and is sensitive to the reservoir volume. Although for general cases, the historical data found in the
Cartesian domain can be added to the misfit function definition, in this example only the buildup data is
used as a measure of convergence. The historical data is checked afterwards to accept or reject the
acquired match.

The compositional well test simulations are performed using tNavigator (Rock Flow Dynamic, 2016),
which employs accelerated algorithms on many cores using shared and distributed memory computing
that can improve the simulations’ accuracy and the costs (Christie et al., 2013).Figure 6 shows the results
of the best models (lowest misfits) in different GP trials. Obviously, the facies model and the estimated
reservoir parameters are different from the truth case model and its well test response. This clearly shows
the non-unique nature of the problem where multiple combinations of the reservoir parameters and the
facies distributions can produce the same well test output. However, using a consentient geoengineering
approach we aim to integrate all available data within a unified framework for a better reservoir
description with a potential reduction of the modeling uncertainty. The implication of having multiple
models with similar output, is on the future production and the development scenarios where different
models could imply different production strategies and future EOR processes.

Figure 5—The propagation of the diffusion front within the truth model at different drawdown times: 0.1 hr (left), 4 hr (middle) and 8
days(right). The streamlines follow the high permeable facies packages.
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Although all best models obtained from different trials show relatively good match qualities on the
log-log plots (Figure 6), only the cases in trial 1 and 3 (approximately) can be accepted because the match
quality in the corresponding Cartesian pressure plots should also be considered (Figure 7). For the models
in trial cases 2 and 4, there are larger pressure differences between the initial pressure at the start of the
simulations and the buildup stabilization pressures, which can indicate the lack of supporting connected
volumes in those models. The issue of having a Cartesian pressure history mismatch would probably
improve if we could include the Cartesian pressure data in the misfit formulae.

Figure 6—The convergence performance of the GP, and corresponding best cases from 4 different trials. Each trial represents a
different seed number.
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The optimization of a multi-objective problem using a weighted approach (equation 6) could be
problematic particularly when the objectives are conflicting. For these situations, a multi-objective
optimization algorithm is preferred (Deb et al., 2000; Beume et al., 2007). This is an interesting matter
for a future study, where we aim to test our algorithm to include the pressure history data for multiple well
tests using a multi-objective optimization algorithm.

Conclusions
In this paper, the PPM was used to calibrate multi-point geostatistical models using pressure transient
data. The PPM could consistently perturb the geostatistical models to generate the new models that honor
the trend and the statistical properties of the underlying training images. On the other hand, the GP was
employed for the inversion process, where only limited well test simulations were required. The algorithm
was successfully tested on a 2D channelized reservoir model with 5 unknown parameters. The GP
provided some solutions that could honor the conditioning hard and soft data as well as the truth well test
responses. The difference observed between the resulting models and the truth parameters could stress the
non-unique nature of the inverse problems where we should expect multiple solutions to reproduce the
same outputs. The results also confirmed that although a good match might be obtained using the log-log
plots, the pressure history data should also be included in the misfit function to contain the impact of the
reservoir volume for more robust optimization.
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