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Abstract The process of reservoir history-matching is a
costly task. Many available history-matching algorithms
either fail to perform such a task or they require a large
number of simulation runs. To overcome such struggles,
we apply the Gaussian Process (GP) modeling technique to
approximate the costly objective functions and to expedite
finding the global optima. A GP model is a proxy, which is
employed to model the input-output relationships by assum-
ing a multi-Gaussian distribution on the output values. An
infill criterion is used in conjunction with a GP model to
help sequentially add the samples with potentially lower
outputs. The IC fault model is used to compare the effi-
ciency of GP-based optimization method with other typical
optimization methods for minimizing the objective func-
tion. In this paper, we present the applicability of using a
GP modeling approach for reservoir history-matching prob-
lems, which is exemplified by numerical analysis of produc-
tion data from a horizontal multi-stage fractured tight gas
condensate well. The results for the case that is studied here
show a quick convergence to the lowest objective values in
less than 100 simulations for this 20-dimensional problem.
This amounts to an almost 10 times faster performance com-
pared to the Differential Evolution (DE) algorithm that is
also known to be a powerful optimization technique. The
sensitivities are conducted to explain the performance of the
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GP-based optimization technique with various correlation
functions.
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Nomenclature

1D One-dimensional
A Non-dominated region
Bar sign “¯” Average value
CCE Constant Composition Experiment
c(x,x’) Kernel or covariance function between two

location x and x’
CGR Condensate Gas Gatio
d The dimension of problem
det[C] Determinant of covariance matrix C
Dn Training data set with n samples
Dn+1 Augmented data set with n + 1 samples
DE Differential Evolution
DFIT Diagnostic Fracture Injection Test
EI Expected Improvement
EnKF Ensemble Kalman Filter
ES Ensemble Smoother
ES-MDA Ensemble Smoother for Multiple Data

Assimilation
◦F Degree Fahrenheit
f The output of the truth function
f A vector containing the output of the truth

function in several locations
F The output of the truth function as a random

variable
F The output of the truth function in several

location as a random vector
GP Gaussian Process

�
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h Reservoir thickness, ft
k × w Fracture conductivity, md ft
k f Current fracture permeability, md
ki Original (initial) fracture permeability, md
KB Kelly bushing
l Lateral length, ft
Ln(L) Negative concentrated log-likelihood
M Misfit function
n The number of available samples

(simulations)
p Current pressure, psi
pi Initial pressure, psi
pr Probability distribution
PR-EOS Peng-Robinson Equation of State
q Production flow rate, bbl/day (liquid) or

MMscf (gas)
Qw r Remaining water in the reservoir after

injection, ft3

r The correlation vector between sample
the x* and the data D

R Covariance matrix = σ 2C
S2(x*) The variance of predicted valuey*

corresponding to sample x* by GP
SRV Stimulated Reservoir Volume
Sw init Initial water saturation in the model
Sw SRV Initial water saturation in the SRV
SRV Stimulated Reservoir Volume
TVD True Vertical Depth
xi A sample i
x f Fracture half length, ft
Y The posterior distribution of the modeled

objective
ŷ The predictive mean of the predictive GP
w Fracture width, ft
WSRV The width of a 1D SRV,

Subscripts

b The current best member
n+1 The augmented training data set by adding

a new sample

o,g,w oil, gas, water

obs Observed data

sim Simulation data

Greek letters
γ Fracture reduction factor
δ Molar composition of components in

oil or gas
θ GP hyperparameters (length scales) of

dimension d
λ An anisotropic distance measure
μ̂ The estimated mean of the GP model

knowing data

μ The prior mean of the GP model
ν A constant used in definingMatérn

correlation function
σ̂ 2 The estimated variance of the GP model

knowing the data
ϕ Porosity
ψ The normal cumulative distribution function
ψs The standard normal cumulative distribution

function
φ The normal probability density function
φs The standard normal probability density

function

1 Introduction

History-matching is a workflow necessary to alter the uncer-
tain model parameters and to ensure that the final model(s)
can satisfactorily mimic the dynamic response of a real
reservoir. This process is usually performed in order to cali-
brate a reservoir model for a better production forecast. The
subject reservoir models can be either average dynamicmod-
els such as well-test analytical models or more expensive
numerical simulations with a large number of cells.

Traditional history-matching iterations are usually per-
formed manually with the help of relying on an expert
with a great knowledge of understanding the problem. How-
ever, with large model sizes and greater level of interactions
between unknown parameters, such tasks become more
cumbersome. Therefore, an automated or assisted history-
matching technique is usually performed to alleviate the
need for manual manipulation of the models in such iterative
and costly processes. The approaches for assisted history-
matching can be divided into two main categories consisting
of data assimilation methods and optimization algorithms
(e.g., gradient-based and derivative-free algorithms).

Ensemble Kalman Filter (EnKF) [1] is one of the most
popular methods for data assimilation that runs in real
time to recursively update the model every time the data
is available. It is a sequential Monte Carlo algorithm that
approximates the posterior distribution. Alternatively, in
contrast to the iterative process of the EnKF for the sequen-
tial updating of the realizations, Ensemble Smoother (ES)
[2, 3] is able to simultaneously assimilate the data in one
go within a spatiotemporal setting. Different variants of
ES such as iterative ES [4], and Ensemble Smoother with
Multiple Data Assimilation (ES-MDA) [5] have also been
introduced to enhance the performance of data assimilation
method in field problems. The data assimilation methods
use a Bayesian framework to combine the priors and obser-
vations, as well as the information about their uncertainty
to provide the posterior distributions. Although sometimes
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data assimilation methods can be defined in a minimiza-
tion context [6], they are generally classified as uncertainty
quantification techniques [7, 8]. In this paper, we look at
history-matching as an optimization problem; hence, data
assimilation methods are beyond the scope of this paper.

Gradient-based optimization techniques such as Gauss-
Newton [9, 10] may not be very useful for many nonlinear
complex problems. For those cases where the analytical
expressions of the gradients do not exist, the numerical
methods for finite differencing can be inaccurate particu-
larly when the objective function is not smooth [11, 12].
Choosing an appropriate step size for differentiation is also
difficult to determine because we cannot afford running
costly simulations for several trials using various steps [13,
14]. Such algorithms are generally classified as local opti-
mizers which cannot guarantee to find the global minima
[15, 16]. On the other hand, the derivative-free methods
such as Differential Evolution (DE) [17] frequently require
a large number of simulations, which may not be feasible
for larger-scale simulation models.

Meta-modeling, which is also known as proxy or sur-
rogate modeling, is a promising approach towards finding
the global extrema for low to medium dimensional inverse
problems where only limited model evaluations can be per-
formed [18, 19]. For this work, we use the Gaussian Process
(GP) technique [20–24], also known as Kriging [25], to
model the differences between the outputs of flow simula-
tion models and the measured data (i.e., misfits). Methods
such as Gaussian Process work particularly well with a
few data points even in higher dimensions. Moreover, they
can provide a prediction of the variance (model uncer-
tainty), which has proven to be very informative in many
optimization schemes [23, 26]. The purpose of building a
proxy model (in this case a GP model) is to avoid unnec-
essary evaluation of the physical model, which can be very
expensive. Instead, we try to build a cheaper model that
conveys the typical behavior of the true physical model.
At each iteration, the proxy model is used to carefully
select new points. This method can considerably reduce the
computation cost of the optimization since fewer expen-
sive function evaluations are required for finding the global
extrema.

GP-based optimization methods have been successfully
applied to many nonlinear problems with low/medium
dimensions [27–31]. However, the use of the GP modeling
approach for history-matching of the reservoir engineering
problems has been limited. Recently, Hamdi et al. [32] pre-
sented an example for numerical well testing of a faulted
reservoir using a GP-based method. In this paper, we use
the IC fault model [33] to highlight the efficiency of the
GP-based methods in exploring and exploiting the misfit
surface in search of global minima that is compared with
the other methods such as quasi-Newton and DE algorithms.

We also show the applicability of the GP-based optimiza-
tion methods in a real fractured tight gas condensate well
to estimate the model parameters. We use the example of
a tight gas well because typically, a limited set of parame-
ters are used in practice when performing production data
analysis of such reservoir problems [34–37]. The aim is to
use the compositional simulations of a simplified numer-
ical model for characterization of the in situ fluid model
and the well/reservoir parameters, which construct a 20-
dimensional inverse problem. The compositional simula-
tions are used to simulate the separator’s fluid composition,
hydrocarbon, and water rates in order to calculate the misfits
using the corresponding measured data. At this stage, the
objective function becomes a weighted sum of individual
misfit values. We compare the performance of the GP-
based optimization method with the Differential Evolution
[38] algorithm as it was investigated in [39]. Furthermore,
the impact of the initial design on the performance of the
GP-based method is discussed and the effect of correlation
function on the misfit convergence is investigated. The used
single-objective optimization algorithm is freely available
as part of the Surrogate Modeling (SUMO) toolbox, which
can be downloaded from http://sumo.intec.ugent.be/SUMO.

2 Proxy modeling and prediction

In modeling computer experiments, we assume that the out-
puts of a truth mode (i.e., observations) that are gathered
in a vector f can be regarded as realizations of a stochas-
tic process. In general, there is no restriction on the type of
the assumed stochastic process [40]. However, the use of the
Gaussian distribution family provides a simple, convenient,
and natural way to formulate the proxy modeling framework
in an analytically tractable way [41]. More specifically,
Mockus [41] showed that the use of Gaussian distribu-
tion is well suited for optimization tasks and can provide
satisfactory results.

Gaussian Process is a probability distribution over an
infinite number of random variables, such that the distribu-
tion over any finite number of which follows a multi-variate
Gaussian distribution [20, 24]. In our case, the random vari-
ables represent the value of a function f (x) at location x.
There is no assumption about the type of the objective func-
tion. It can be any function such as a misfit function in
reservoir history-matching or any benchmark function with
various local minima. The GPmodel defines the distribution
over function values f (x) which is then updated in light of
training data. The updated GP model is used to predict the
unseen test cases.

To represent the simulation misfit values with a GP
model, we perform a limited number of simulations (n) by
sampling from the d-dimensional reservoir parameter space

http://sumo.intec.ugent.be/SUMO
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(initial design). The sample point is shown by xi and the
output is represented by fi = fi (xi ) This creates an initial
training set Dn = {(xi , fi ), i = 1, . . . n} where xi s create an
n × d design matrix of the sample parameters and fi s build
an n × 1 column vector of the correlated misfit values (f).
The GP is used for modeling the unknown simulation mis-
fit function. For this finite set of observations, the GP model
is simply a joint Gaussian distribution F∼N(μ1, C), where
the process mean µ is a constant (but unknown) and 1 is
an n × 1 column vector of ones. For the ease of notational
convenience, the uppercase letters are used to represent the
random variables. The vector or matrix quantities are shown
in bold throughout this manuscript.

A GP model is completely characterized by its mean
and its covariance matrix R = σ 2 × C (σ 2 is the process
variance.) In this paper, a constant-mean GP model is used
to represent the truth model. This can be seen as an ordi-
nary Kriging model as described in geostatistics [25] where
the mean function is an unknown constant and needs to be
estimated. Each entry (i , j) of the kernel (or covariance)
matrix is obtained by a covariance function c(xi ,x j ). In this
work, the stationaryMatérn correlation function [46] with
ν = 3/2 is adapted to fill the kernel matrix, that is:

c
(
x, x′)

υ=3/2=σ 2
(
1+√

3λ
)
e−√

3λ (1)

λ =
√

∑d

m=1
θm (xm−x′

m)2 (2)

in which, x and x′ are any two sample locations (inputs),
and λ is the anisotropic distance measure with d hyper-
parameters θs. For the (second order) stationary random
processes, the mean is constant and the covariance is only
a function of the distance between the locations [25]. The
goal of representing the outputs using a proxy (GP) is to
be able to predict the truth model response at any untrained
location without the need to run the truth model. Such pre-
dictions can be made using ordinary Kriging by employing
a frequentist [23, 40] or a Bayesian approach [42, 43]. The
frequentist analysis of an (ordinary) Kriging predictor is
based on a linear combination of the observed values where
the Maximum Likelihood Estimation (MLE) is used to esti-
mate the Kriging model’s parameters (e.g., [µ, σ 2, θs]). The
Bayesian approach, on the other hand, allows us to spec-
ify a prior on the Kriging parameters and derive the full
conditional posterior distribution.

2.1 Frequentist analysis of ordinary Kriging

To predict the function value at an unsampled location x*,
the Kriging predictor ŷ(x*) is written as a linear combina-
tion of the observed data, i.e., ŷ (x∗) = ∑n

i=1ai fi where ai s

are the weights and fi s are the observed values. In classi-
cal frequentist approach, we can treat the predictor and the
observed data as random values i.e. Y (x∗) = ∑n

i=1ai Fi .
After using the random counterpart of our data, we make the
unbiasedness assumption, that is E[Y (x*) − F(x*)] = 0, in
which F(x*) is the truth response of the function. The unbi-
asedness assumption amounts to having a constant mean
over the random process (stationary). The optimum weights
(ai s) are obtained by minimizing the Mean Square Error
(MSE) E[ai Fi − F(x*)]2. Therefore, the Kriging predictor
is called Best (because of minimizing the variance) Linear
(because of its linear combination form) Unbiased (because
of the constant mean assumption) Predictor which is simply
called BLUP [25, 40, 44]. The optimal Kriging weights can
immediately give (1) the Kriging predictor ŷ(x*) and (2) the
associated (minimized) MSE or Kriging variance denoted
by s2(x*) according to these equations:

ŷ
(
x∗) =μ+rTC−1 (

f − 1μ̂
)

(3)

s2
(
x∗) =σ 2

[

1−rTC−1r+
(
1 − rTC−1r

)2

1TC−11

]

=σ 2Vθ (4)

where r is the correlation vector between the predicted
point Y (x*) and the observation vector F assuming the same
Matérn correlation function with ν = 3/2. The second
term in the MSE equation (rTC−1r) has a negative sign that
indicates a reduction in uncertainty as the Kriging predic-
tor is correlated with the observations, while the last term

(
(
1−rTC−1r

)2

1TC−11
) has a positive sign which reflects an increased

uncertainty in prediction as μ is unknown and needs to be
estimated.

In Eqs. 3 and 4, the process mean (μ) and variance
(σ 2) are estimated by maximizing the Gaussian likelihood
function. The corresponding estimated values for mean and
variance are shown by μ̂ and σ̂ 2 that can be analytically
obtained as follows:

σ̂ 2=
(
f − 1μ̂

)T C−1
(
f − 1μ̂

)

n
(5)

μ̂= 1TC−1f
1TC−11

(6)

In Eq. 5, n is often replaced by n − 1 to take into account
the loss in the degrees of freedom associated with estimating
μ [45]. Without having an estimation of the hyperparameter
vector (θ), we are unable to calculateC,μ̂, and σ̂ 2 as they all
depend on θ . Therefore, the hyperparameters (θs) also need
to be estimated. Plugging the estimated mean (μ̂) and vari-
ance (σ̂ 2) into the Gaussian likelihood function, we come
up with a new expression which is called the concentrated
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likelihood function that only depends on the hyperparmeters
(θs). In practice, the hyperparameters are estimated by mini-
mizing the negative concentrated log-likelihood [20], which
is defined as:

ln (L) = −n

2
ln

(
σ̂ 2

)
−1

2
ln (det [C]) (7)

in which det[C] is the determinant of matrix C. For practi-
cal purposes, we use the MatlabTM “fmincon” optimization
function [46] to minimize ln(L). Therefore, to use Eqs. 3
and 4, we first need to estimate the hyperparameters by
minimizing (7); then, we are able to compute the estimated
mean and variance (5) and (6). Having estimated all Kriging
parameters, we can now use Eqs. 3 and 4 to define a pos-
terior Gaussian distribution for predicting the misfit value
(or the objective function) in any untrained location x*, i.e.,
Y (x*)∼ N (ŷ(x*), s2(x*)).

2.2 Bayesian interpretation of ordinary Kriging

In Bayesian framework approach, the GP is used as a prior
to compute a predictive (posterior) distribution for making
prediction for unseen function values Y (x*) in light of train-
ing data F [20, 26]. The reader should bear in mind that
this inference takes place only for the GP model parame-
ters (e.g., [σ 2, μ, θ ]), not the parameters of the underlying
physical model such as porosity and permeability.

Following the properties of GP, any finite set of the
function outputs have a joint Gaussian distribution. There-
fore, our prediction Y(x*) is jointly distributed with the
observations, i.e.,
(
F
Y (x∗)

)
∼N

( [
μ1
μ

]
, σ 2

[
C r
rT 1

] )
(8)

Using the conditional properties of Gaussian distributions
and after factorizing the joint distribution using the Schur
complement [20, 47, 48], we can obtain the conditional
distribution (or the posterior) in a closed form as [24, 48,
49]:

Y ∗|F, σ 2, μ, θ ∼ N
(
μ+rTC−1 (f−μ1) , σ 2

[
1 − rTC−1r

])
(9)

This estimation is similar to the simple Kriging predic-
tor in geostatistics where the GP parameters are known.
In order to have similar results as in the frequentist anal-
ysis of ordinary Kriging, we have to use Jeffrey’s non-
informative improper prior distributions [50] for μ and σ 2

that is pr(μ) ∝1 for −∞ < μ < ∞ and pr(log σ 2)∝1 (or
pr(σ 2) ∝1/σ 2) for 0 < σ 2 < ∞ (see chapters 1 and 2 in
[51]). The improper distributions are used to reflect the fact
that we have little knowledge on those parameters. They
are called improper as the integral of their density distribu-
tions are infinite. Therefore, the joint distribution pr(σ 2, μ,

θ )∝pr(θ)/σ 2 serves as a prior distribution for the inference.

For ordinary Kriging with an unknown mean, we are inter-
ested to compute the marginal posterior of Eq. 9 over μ, i.e.,
Y*|F, σ 2, θ as:

pr(y∗|f, σ2, θ) =
∫ ∞

−∞
pr(y∗|f, σ 2, μ, θ) × pr(μ|f, σ 2, θ)dμ (10)

Following the Zellner’s approach [43, 51] the posterior
probability of the mean is a normal distribution, i.e., pr(μ|f,
σ 2, θ)∼N(μ̂, σ 2(1TC−11)−1). Knowing Y*|F, μ, σ 2, θ

from Eq. 9 (i.e. simple Kriging), it can be shown that the
marginal posterior distribution (10) is also a Gaussian dis-
tribution, i.e., Y*|F, σ 2, θ∼ N(ŷ(x*), σ 2Vθ). This is similar
to the result obtained for the ordinary Kriging using the
frequentist approach (3) and (4).

By the same token, we can now remove the condi-
tion on σ 2 by marginalization of Eq. 10 to find Y*|F,
θ . The conditional posterior distribution of σ 2 is in the
form of an inverted-Gamma distribution [51], i.e., pr(σ 2|f,
θ )∝ σ−(n+1)exp[−(n−1)σ̂ 2/2σ 2]. In the same manner, the
predictive marginal distribution of Y* given the covariance
hyperparameters can be calculated as:

pr(y∗|f, θ)=
∫ ∞

0
pr(y∗|f, σ 2, θ)×pr(σ 2|f, θ)dσ 2 (11)

Handcock and Stein [42] analytically calculated this inte-
gral and realized that this conditional distribution is in the
form of a shifted Student’s t distribution, i.e., Y*| F, θ ∼
tn−1(ŷ(x*), σ̂ 2Vθ). Finally, we can try to remove the con-
dition on θ to find Y*|F. However, in the latter case, the
marginalization on θ is extremely complicated and requires
numerical methods such as Markov chain Monte Carlo
(McMC) to sample from the predictive distributions [42,
49].

It should now be clear that making a Gaussian assump-
tion can largely simplify the inference and estimation
problem as many formulations can take simplified ana-
lytical forms. For example, in the case of non-Gaussian
likelihood training the GP can get complicated and might
require some transformations [24]. If we do not make
the Gaussian assumptions, the predictor Y (x*) given the
data (i.e., E[Y (x*)|F]) may not be linear and therefore
the linear frequentist approach may not serve as a good
predictor for Y (x*)|F [45]. The frequentist linear predic-
tor is a limit of Bayesian approach when we use a GP as
the stochastic model, and also when we use improper uni-
form distributions as priors for µ and σ 2. Although it is
obvious that the Bayesian approach is a thorough method
to address the uncertainty, in practice, due to the com-
plexity of the numerical methods involved in the Bayesian
approach (i.e., McMC), the frequentist approach is preferred
for the modeling tasks [25].
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3 Expected improvement

After building a proxy model using the observed values of
the objective function (e.g., the misfit values of the reser-
voir simulation), we need further analysis to be able to
use the proxy model for the optimization task. In partic-
ular, we need to use the proxy model to realize the good
locations that most likely have lower objective functions. If
we realize such locations, we can get more samples from
these areas and run the actual simulator to see the out-
come. This procedure can be repeated many times which
can result in more accurate proxy models for the purpose
of optimization. However, the good locations for the truth
model (global minima) do not necessarily reside in the areas
that minimize our proxy model. This is because we have
an uncertainty associated with our fitted surface (i.e., Krig-
ing variance). Such a naive minimization idea can easily
jeopardize the global minimization trial. For instance, in
Fig 1 (left), the initial design has failed to sample the region
where the global minimum is located (i.e. 0.6 < x < 0.8).
If we try to minimize the Kriging function itself without
any additional criteria we come up with a proposal loca-
tion at x = 0.3 (Fig. 1, left), which only helps exploit the
space and get closer to a possible local minimum around
x = 0.2 (Fig 1, right). Because we have neglected to
incorporate the uncertainty of the fitted surface into the opti-
mization procedure, no matter how many times we repeat
this algorithm we cannot find the global minimum. There-
fore, we have to define some additional sampling criteria to
take into account the uncertainty of the fitted surface and
make a balance between the exploration and the exploita-
tion of the parameter space in the search for the global
minimum.

Expected improvement (EI) or E(I (x*)) is a popular
and efficient sampling criterion, also known as infill crite-
rion or acquisition function, which quantifies the amount of

improvement that is achieved by sampling from any loca-
tion x* [22, 52]. The improvement is measured with respect
to the current best sample xb having a minimum value of fb.
As it was shown above, the uncertainty about any unseen
location x* can be represented by the GP predictor which is
a random variable Y with mean ŷ(x*) and standard deviation
s(x*). The statistical improvement function is defined as
max( fb − Y , 0). The improvement is measured with respect
to the current best value of the objective function ( fb). In
the EI infill criterion, we try to maximize the expected value
of the improvement as:

E(I
(
x∗) ) ≡E

[
max( fb−Y

(
x∗) , 0)

]
(12)

The closed form of the expected improvement can be
expressed as [22]:

E
(
I
(
x∗)) =s(x∗)uφs (u) +s(x∗)ψs(u) (13)

where u = ( fb – ŷ(x*))/s(x*), and φs and ψs are the stan-
dard normal cumulative distribution and density functions
respectively, i.e.,

φs

(
u= fb−ŷ (x∗)

s(x∗)

)
=

[
1

2
+1

2
erf

(
fb−ŷ (x∗)√
2s(x∗)

)]
(14)

ψs

(
u= fb − ŷ (x∗)

s(x∗)

)
= 1

s(x∗)
√
2π

exp

[

−
(

fb−ŷ (x∗)√
2s(x∗)

)2
]

(15)

The first term in Eq. 13 is larger than the second term
when ŷ(x*) is small, while the second term is larger than the
first term when s(x*) is large. In other words, the first term
promotes the exploitation, and the second term promotes the
exploration. Therefore, the EI has a way to balance explo-
ration and exploitation for the optimization task which it
turns to be very effective in practice.

Fig. 1 The minimization of the fitted GP (Kriging) model without any
infill criteria at iterations i (left) and i + 1 (right). Without any infill
criteria, the uncertainty of the GP model is not taken into account for
the sampling which consequently leads to a failure in finding the global

minimum at x = 0.75. The black dashed curve is the truth function,
and the blue curve is the fitted GP model. The figures were produced
using UQLab [143, 144]
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4 The GP-based optimization workflow

The application of GP for optimization (or reservoir history-
matching) is a multi-stage workflow. Figure 2 shows a
flowchart of the GP-based optimization algorithm that is
used in this study. First, we generate a limited number
of samples (model parameters) from the parameter space
(initial design). The actual reservoir simulations are then
performed to calculate the corresponding misfit values by
comparing the reservoir simulation outputs with the mea-
sured data. Assuming a GP prior as a distribution over
observed data (Dn), we obtain a predictive (posterior) distri-
bution Y (x*)∼ N (ŷ(x*),s2(x*)) using Eqs. 3 and 4. The GP
model parameters are estimated by the MLE approach as in
Eqs. 5, 6 and 7 (a primary optimization stage). Secondly,
using the predictive GP, the EI infill criterion (13), (14) and
(15) is maximized to propose a new sample location (x**)
which is likely to have a lower misfit value than the cur-
rent best sample in our data Dn (a secondary optimization
stage). Differential Evolution (DE) is used to maximize the
EI criterion. This potential optimum point (x**) is passed
to the actual simulator and the corresponding misfit value
f (x**) is obtained. The new point (x**, f (x**)) is then
added to augment the available data (Dn+1) which is also
used to update the surrogate model’s accuracy for the next
iterations. This procedure is repeated until some stopping
criteria are reached.

Figure 3 portrays the ability of the EI infill criterion in
conjunction with the predictive GP to find the minimum of
a 1D function in different iterations. In this figure, black
circles represent a few observation points that are sampled
from the truth function that is shown with a black dashed
line. At iteration 0 (i = 0), the expected improvement (green

Generate and initial 

population of ‘n’ 

samples (x
i
’s)
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Fig. 2 A flowchart of the GP-based history-matching used in this
study

curve) promotes the exploration of the parameter space as
the highest pick of the EI function residing in an area where
we have the largest uncertainty (the shaded region repre-
sents the uncertainty of the proxy model that is a 95 %
confidence interval obtained from the Kriging error). There-
fore, the next point is suggested at around x = 1.5. The
process is repeated for a few iterations and, as a result, the
Kriging model (blue curve) is sequentially updated. At itera-
tion 8 (i = 8), although the EI is high at x = −3 (with a large
prediction error), the expected improvement’s pick is close
to the points with lowest ŷ, which promotes the exploitation
of the space. Eventually, the global minima is found at x = 0
in iteration 9.

4.1 A note on the dimensionality of the GP-based
optimization method

Bull [53] gives explicit formulas for the convergence rate
of GP-based optimization. Under some assumptions, he
proves a convergence rate of O(nˆ(−(v)/d)) with n being
the sample number, ν the smoothness factor of the Matérn
correlation function, and d the dimension of the problem.
Using this, we can see the dimensionality scales inversely
(1/d in the exponent) with the number of required iterations.
When solving a problem one may plug in a d and a v to
get a function f (n) for getting a rough idea on how fast
a problem could converge. However, the current GP-based
optimization approach that is presented in this paper should
not be seen as a universal approach for all types of history-
matching problems with large dimensions (>100). This
is an optimization technique for handling low to medium
dimension problems with expensive functions (simulations)
where only limited number of function evaluations can be
performed. As such, it can be combined with some methods
such as gradual deformations [54] or probability pertur-
bation [55] to formulate a history-matching problem by
defining a geological process rather than large number of
unknown cell values [56–58]. GP-based optimization meth-
ods, like most proxy modeling techniques, are limited by the
curse of dimensionality. In practice, GPs have been applied
to problems up to about 30 variables and most of the time to
problems with only around 10 variables [59] for engineer-
ing design optimization, calibration, etc. [18]. It is important
to note that, the number of variables is not necessarily a
problem for GPs. The most difficult challenge is that intro-
ducing more variables indirectly increases the required size
of the data. While recent GP techniques exist to scale up
to more data, they often sacrifice accuracy and have not
yet been tested for optimization purposes [60]. In addition,
there are other challenges to overcome as well—such as
optimizing the expected improvement criterion in thousand
dimensions or optimizing the many hyperparameters of a
high-dimensional GP model. However, the subject of GP
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Fig. 3 The GP-based optimization using EI in different iterations (a–
f) to find the minimum of a multi-modal function (black dashed curve).
The blue curve is the fitted GP model with its associated prediction

uncertainty (the grey region), the green curve is the EI function and
the circles are the observed data at each iteration. The figures were
produced using UQLab [143, 144]

is an active subject in global optimization and engineering
designs and new variants of GP-based optimization are fre-
quently introduced which seek to improve the performance
of GP-based optimization to even ensure an exponential
convergence rate without any internal optimization over-
head [47]. Meanwhile, if the intrinsic dimensionality is low,
sensitivity analysis and dimension reduction techniques can
be used to reduce the number of variables in [61]. For
instance, recently, Wang et al. [61] presented a method to
use a variant of GP in a billion dimensions with low intrinsic
dimensionality. Certainly, one of the most important chal-
lenges in optimization and history-matching problems is
the large number of variables. However, finding the global
optima efficiently for low-dimensional problems, which are
often nonlinear and computationally expensive, are also
equally important and challenging (see the example of IC
fault model with 1 to 13 parameters in [62]). For large
dimensional problems, a variety of other history-matching
techniques exist including gradient- and ensemble-based
methods [1, 5, 8, 63–68].

4.2 Possible routes for the extension of GP-based
optimization method for multiple poro-perm
realizations

If we use the GP-based optimization algorithm and perform
the optimization for one realization with one set of poros-
ity and permeability distributions, the final proxy model

(i.e., at the end of optimization) which is obtained for this
realization cannot be used to mimic the performance of a
different realization with different porosity and permeability
distributions. This is evident as different spatial distribu-
tions for the porosity and permeability can create different
responses. However, this does not imply that the GP is inef-
ficient. The purpose of GP-modeling in essence is not to
replace a reservoir model but it is to help minimize an
objective function with a minimum number of evaluations
which is very important for many problems such as param-
eter estimation [69–71]. We should also note that as per the
“no free lunch theorem” for optimization and search prob-
lems [72], finding a universal history-matching approach is
theoretically impossible [8]. Nonetheless, we can think of
numerous directions that the current workflow can be poten-
tially extended for use in more complex optimization tasks
involving geology:

1. The GP-based optimization is used to sequentially sam-
ple from the parameter space to minimize the objective
function in limited number of simulation. However,
there have been some work on parallel [48] hybrid and
batch optimization using GPs [26], which can further
improve the optimization cost.

2. The GP can be combined with any functional param-
eterization algorithm such as probability perturbation
[73] to obtain the history-match models by changing the
spatial distributions of the facies which are controlled
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by a few global parameters to change the probabili-
ties [58]. In addition, GP or in general, proxy-based
optimization techniques might be used for different
realizations if they can be combined with the other tech-
niques such as Principal Component Analysis (PCA)
[74] or Multi-Dimensional Scaling (MDS) [75]. These
are used to project different geological models into a
lower space to reduce the model dimensionality.

3. The ability of GP or proxy-based optimization methods
to balance between the exploration and the exploita-
tion can be used in the same way as the neighborhood
algorithm [76] works, where a large quantity of ini-
tial models are produced and are projected to smaller
dimensions [7]. Then the proxy-based approach can be
used to explore the model space and find the regions
(realizations) with lower misfits.

4.3 The efficiency of the GP-based optimization
approach

The GP-based optimization approach is largely favorable
for global optimization when we have limited resources and
cannot afford running several costly numerical simulations.
The gradient-based approaches are efficient in finding the
local solutions particularly, and the global solutions when
the objective function is relatively smooth. However, for
situations that the objective functions have many local min-
ima, the downhill trend of the gradient-based approaches
would not necessary lead to a global solution. Besides, as
mentioned earlier, the population-based methods generally
require a large number of function evaluations to converge.
In [77], a comparison is made between the GP-based opti-
mization and the Sequential Quadratic Programming (SQP;
based on Broyden-Fletcher-Goldfarb-Shanno (BFGS)) on
several applications, and [78] compared the performance of
a GP-based optimization algorithm with other global search
methods such as genetic algorithms and pattern search. For
those, the GP-based optimization showed superior perfor-
mance. In this paper, we also try to compare the perfor-
mance of the GP-based optimization with two famous mem-
bers of the gradient-based and the derivative-free stochastic
search methods.

(a) Quasi-Newton methods Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm is a quasi-Newton approach for
approximation of Hessian matrix in nonlinear optimiza-
tion problem [79]. BFGS is one the most popular quasi-
Newton approaches for solving the optimization problems
[80, 81]. However, sometimes, when the initial Hessian
is not properly chosen or the search direction is poorly
defined, the standard BFGS might take a larger number of
iterations to converge in some problems [82]. Self-scaling
BFGS methods [83–87] are then developed to overcome

these challenges and to improve the convergence rate in
the unconstrained optimization context. In this paper, as
suggested by Zhang and Reynolds [88] we use Oren and
Spedicato’s method [87] for scaling the Hessian in each
iteration [80, 89].

(b) Differential Evolution In the context of derivative-free
numerical optimization, DE is a simple, effective and robust
population-based evolutionary algorithm for the global opti-
mization [17, 90–92]. It has outperformed many other algo-
rithms such as particle swarm optimization in numerous
benchmark problems [93] and has been amongst frontier
global optimization methods in numerous completions and
contests [94–96]. As such, it has been successfully applied
to many realworld problems such as financial markets mod-
eling [97], data mining [98] and reservoir engineering [57,
99–101] among many others. DE has been implemented
in major commercial reservoir simulation packages such as
tNavigator.

Some studies showed that the performance of classical
DE is sensitive to its setting parameters (crossover and scal-
ing factor) and a special combination of the parameters
are required for a favorable converge [102]. Hence, some
empirical work focused on the selection of setting parame-
ters to ensure the global convergence [103, 104]. Recently
[105] showed that classical DE cannot guarantee the global
convergence for a special category of functions where the
global optimum is close to the boundaries with a larger
region on the other side of the global optimum. In another
study, Hu et al. [92] proved the sufficient conditions for the
global convergence of classical DE and provided an algo-
rithm that can satisfy such conditions. To overcome the chal-
lenges with parameter selection of classical DE algorithms,
which might cause the DE to fall in local optima or have
a premature convergence, many recent studies were con-
ducted on developing improved and adaptive DE algorithms
[90, 91, 106, 107] which resulted in promising results. In
this study, we use the recent adaptive DE algorithm pro-
posed by Gong et al. [107] which showed superior global
convergence for a large category of benchmark functions.
In this section, the need for finding the global minimum of
a function with limited function evaluations is exemplified
using the IC fault model [33].

The IC fault model is a 2D cross-sectional reservoir
model of a layered reservoir with a total thickness of 60 ft
and 100 × 200 cells. Each grid block is 10ft wide. The
model has two segments that are separated with a single
vertical fault and is comprised of six layers with alternat-
ing good and poor quality rocks. An injection well is placed
in the left-hand edge and a production well is producing oil
from the right-hand edge and both wells are operated by
the bottom hole pressure This reservoir model is described
by only three parameters: a high quality sand permeability
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(khigh), a low quality permeability (klow) and a fault throw
(h) (Fig. 4). The fault throw controls the flow across the
fault by changing the contact between the high and low
quality sand layers. A truth case is generated by choosing
h = 10.4 ft, khigh = 131.7 md and klow = 1.31 md, where the
values of these three parameters are drawn independently
from uniform distributions as h ∈ [0,60], klow ∈ [0,50] and
khigh ∈ [100,200]. A full description of this model can be
found in [33]. The misfit function for the IC fault model is
defined by

M = 0.5
∑

p∈{o,w}
∑T

t=1

(
qobsp − qsimp

)2

t

σ 2
t

(16)

where T is the number of observations, qp represents oil
and water rates, sim and obs indicate the simulation and
observed data respectively and σ = 0.03 × qobsp repre-
sents the measurement error. The IC fault is a difficult
history-matching problem with several steep minima in
the objective function. The full discussion of the objective
function can be found in [33, 62]

For history-matching the IC fault model, the initial sam-
ples are generated using a Latin-Hypercube design with 20
members. In each individual optimization repetition, a sim-
ilar set of initial samples is used for both DE- and GP-based
optimization methods, the best of which (with minimum
misfit value) is used as the starting point for the BFGS
method. Figure 5 shows the performance of various opti-
mization methods. The figure shows that the quasi-Newton
method has a negligible improvement in the function value
with an almost plateau around the misfit value of 300 after
around 100 simulations (a possible local minimum). DE
is converging slowly towards the global minimum with a
larger number of evaluations, while the GP-based optimiza-
tion method provides the lowest misfit of around 17 in less
than 100 function evaluations.

The faster convergence rate of the misfit function suggest
the potential effectiveness of this surrogate-based method
in reservoir history-matching for the cases where the mis-
fit evaluation in a single simulation run could perhaps take
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Fig. 5 The average performance of DE, quasi-Newton, and GP-based
methods in minimizing the IC fault model

several minutes to hours consequently and hence the number
of affordable numerical simulation runs is drastically low.
However, it is noted that if the objective function is compu-
tationally cheap, the GP-based algorithm may not be very
efficient as the computational time from the optimization
itself can be more than doing function evaluations. For exact
inference using Cholesky decomposition [20], the compu-
tational complexity of a GP depends directly on the size
of the data set and it scales as O(n3) [108], with n being
the number of data points. For a limited number of data
points, such as when dealing with expensive simulations,
constructing a GP model takes well under 1 s for smaller
samples or within 1 min (around 500 samples). As men-
tioned above, the domain of GP-based optimization is being
rapidly developed and many new algorithms are introduced.
We have tested a GP algorithm [47] without the need for
an internal optimization which could tremendously reduce
the optimization cost of a 20-dimensional problem for less
than a few minutes. Using isotropic correlation function
for some problems can also substantially reduce the com-
putation associated with the hyperparameters estimations.
Increasing the size of the training data points, can cause the

Fig. 4 IC fault model
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GP models to become slower. In such cases, some approx-
imation methods exist (on the CPU as well as the GPU)
which can trade off the accuracy versus the computational
cost. These can reduce the computation complexity with
O(n2) [109] or even O(n) [110, 111]. Nevertheless, in the
context of expensive simulations, the number of data points
is inherently low and the speed is not often a big issue for
many applications.

Although in this study we were interested in global
optimization, finding local optima by the gradient-based
methods can be a useful characteristic for uncertainty quantifica-
tion. For instance, using multiple initial points based on a
prior Gaussian, one might be able to identify all the modes
for some problems, which can be the motivation for some
methods such as the gradient-based randomized likelihood;
see Oliver et al. [64]. Depending on the statistical criterion
used, there is also some work on the convergence proper-
ties of GP-based optimization methods [112], which can

prove that, given enough samples, it will cover the search
space uniformly by finding all global and local optima. The
convergence rates are also given in [53]. Nevertheless, it
should be noted that such work is theoretical in nature, and
depends on how good the expected improvement criterion
can be optimized as the required number of samples can
grow large.

5 Application example

Triassic Montney Formation is a low-energy hydrocarbon-
rich Formation located within the Western Canadian Sedi-
mentary Basin across Alberta and British Columbia, Canada
[12]. The Formation consists of various facies ranging from
conventional sandstone reservoirs in the east to tight silt-
stones and shales in the west (Fig. 6, left) [113]. The fluid
distribution trend map (Fig. 6; right) also shows a great

Fig. 6 Left The expected facies distribution map of the Montney Formation across Alberta and British Columbia’s areas [113]. Right The expected
fluid distribution within the British Columbia’s region [114]
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variability in expected fluid distribution from dry gas in
the western flank to more liquid rich fluid in the eastern
areas [114]. We consider a 1-year production data from a
fractured tight gas condensate well in this Formation. The
subject well is located within the British Columbia’s areas,
and is producing liquid-rich gas from a tight siltstone reser-
voir. This is a horizontal 8-stage fractured well with a length
of 1520 m that is drilled at an average depth of 1984.2 m
Kelly Bushing (KB) True Vertical Depth (TVD). The sub-
ject well is producing a mixture of hydrocarbon and water.
The initial reservoir pressure is estimated 4850 psi from the
Diagnostic Fracture Injection Test (DFIT) [115]. The Con-
densate Gas Ratio (CGR) varies from around 35 bbl/MMscf
to a constant low value of 4 bbl/MMscf while the well pres-
sure is almost stabilized at around 430 psi after 1 year of
production.

Initial PVT analysis considered an 11-component fluid
with a composition that was approximately known from one
surface sampling after around 100 days of production. How-
ever, there was a high concern that if the recombination of
the sampled fluid would be a good representation of the
initial fluid. This is of course a valid concern as for the
tight and shale reservoirs, large pressure drawdowns hap-
pen around the wellbore, which can dramatically change
the composition of the produced fluid [116, 117]. This
issue in turn questions the application of analytical methods
[118, 119] for the use of standard production data analy-
sis to achieve a confident well/reservoir characterization.
Therefore, the main objective of this well history-matching
problem was to characterize the reservoir and fluid models
from numerical (compositional) simulations.

The fluid behavior is modeled using a Peng-Robinson
Equation-of-State (PR-EOS) [120] with an unknown initial
fluid composition. The gas condensate fluid components are
N2, CO2, C1, C2, C3, i-C4, n-C4, i-C5, n-C5, n-C6, and C7+
that are similar to those determined from the separator sam-
ples. N2 and CO2 had very small contributions and were
kept constant, while the composition of the other eight com-
ponents were considered unknown. The C7+ properties are
estimated from specific gravity and molecular weights from
some relevant correlations. Therefore, the in situ fluid com-
position (the mole fractions of the components) is used as a
matching parameter vector and the misfit function is formu-
lated to also include the mole fraction of the produced fluid
at the separator.

The numerical model for this problem is an effective 1D-
gridded model suitable for simulating the linear flow, with
an assumption of uniform symmetrical hydraulic fractures.
This 1D model has one well connection and tends to sim-
ulate the flow towards one face of a fracture instead of
simulating a horizontal well with eight symmetrical frac-
tures. The compositional simulations are performed using

tNavigator [121]. tNavigator is a powerful reservoir sim-
ulator designed to run parallel acceleration algorithms on
multicore and manycore shared and distributed memory
computing systems. For this 1D model, logarithmic grid-
ding with a geometric ratio of 1.28 is used for a grid size
distribution away from the fracture face. A large lateral dis-
tance is used to ensure that the well is in transient flow
for the entire producing period. We assumed the fracture
behaves as an infinite conductivity fracture. The fracture is
modeled using a single grid with a width of 1 ft and large
permeability (comparing to the matrix permeability) to give
a large conductivity of 50 md ft (see Fig. 7). It was previ-
ously shown by Hamdi et al. [39] that for the duration of
the production data in this well, the fractures interference
did not start as the Palacio-Blasingame type curve [122]
showed a dominant linear flow (a negative one half slope
trend) for duration of the test. By assuming symmetric and
similar hydraulic fractures as shown in Fig. 7, the
production flow rates of the well were divided by 16, which
amounts to flow toward one side of a fracture plane. In this
model, the reservoir thickness (h) is 328 ft, (assumed) frac-
ture half-length (x f ) is 158.5 ft, porosity (ϕ) is 5 %, lateral
length (l) is 5000 ft for simulating a pure transient flow,
and the assumed propped fracture conductivity (k × w) is
50 md ft. An enhanced permeability region with a vari-
able size is considered around the wellbore to simulate the
impact of the Stimulated Reservoir Volume (SRV). The lat-
eral extent of the SRV is determined from a simplified
stepwise water saturation profile and the remaining water in
the SRV after injection (Qwr = volume of injected water −
volume of produced water = 2245 bbl or 12,606 ft3), that is:

WSRV = Qwr

2x f hϕ (Sw SRV − Sw init)
(17)

where WSRV is the width of the SRV (ft), Qwr is the remain-
ing water in the SRV (ft3), Sw SRV is the average water
saturation within the SRV, and Sw init is the lower average
water saturation in the matrix reservoir volume. The latter
two saturation values construct an initial water profile in the

Fig. 7 The equivalent 1D fracture model that is used for the simula-
tion of the linear flow towards the fracture face. The warmer color is
the larger permeability and indicates the permeability contrast in the
fracture, SRV and the matrix for one realization
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reservoir model. Introducing this water profile is necessary
to simulate an initially high volume of water that was being
produced at the beginning of the production.

Other uncertain model parameters includ, the permeabil-
ities and initial saturations in the SRV and in the bulk of the
reservoir. The geomechanical effects are only considered
in the main hydraulic fracture with a simplified model to
account for the permeability variation with pressure [123],
that is:

k f = kiexp (γ (p − pi )) (18)

in which k f and ki are the current and the original frac-
ture permeabilities at p and pi respectively. pi is the initial
reservoir pressure and γ is the permeability reduction fac-
tor. Using pressure-dependent permeability, instead of a is
fully geomechanical approach, was suggested by Dinh et al.
[124] to be a good approximation for hard competent linear
elastic rocks that are found in this field. The selected ranges
of γ allow the simulation of the extreme cases when the
propped fracture stays unchanged or when it is immediately
closed by the early drawdowns.

Corey’s equations [125] are used to generate the relative
permeability curves from some fixed end-points for rela-
tive permeabilities and saturations, by only varying some
exponents (Nw, Now, Ng, Nog) to shape the water-oil and

oil-gas relative permeability curves [125]. In this work, the
irreducible water saturation is assumed to be 0.15. Other
phenomena, including sorption and non-Darcy flow are
not considered in this study. Table 1 presents the model
parameters with their prior variation ranges for this problem.

6 Results

This well is operated by gas production for the first 50 days
and is then switched to the bottomhole pressure produc-
tion control afterwards. For the single-objective history-
matching case, a total (or scalarized) misfit function is
defined to combine the misfits of the daily production rates,
as well as pressure and surface hydrocarbon compositions
(δ). Hence, this is the “total misfit” that is modeled by
the GP in the single-objective optimization trials. However,
because the individual misfits have different magnitudes,
they are normalized by their average values of correspond-
ing measured data over the entire production period (shown
with a bar sign “¯”) so that the contribution of each mis-
fit is comparable to the other misfits. The average values
are constant and act as the normalization constants [126].
Although, in general, it is recommended to use the formal
misfit formulation to include the measurement errors, in
this case, we did not have any issue to simply combine our

Table 1 Parameters adjusted for history-matching [39]

Index Parameter description Min Max

Initialization Water X1 Movable initial water in virgin matrix 0.2 0.4

X2 Movable initial water in the SRV 0.4 0.7

Rock X3 Bulk permeability 0.00001 md 0.001 md

X4 SRV permeability 0.01 md 10 md

Fluid X11 C1 0.75 0.9

X12 C2 0.05 0.08

X13 C3 0.04 0.08

X14 i-C4 0.005 0.02

X15 n-C4 0.005 0.02

X16 i-C5 0.002 0.01

X17 n-C5 0.002 0.01

X18 C6 0.002 0.01

X19 C7+ 0.015 0.06

PVT(C7+ characterization) X5 MW of C7+ 100 140

X6 SG of C7+ 0.75 0.9

Relative permeability (Corey’s) X7 Nw 2 4

X8 Now 2 4

X9 Ng 2 4

X10 Nog 2 4

Fracture permeability reduction X20 γ 1E-6 0.01
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objectives using the average values. The sum of the squared
normalized difference or total misfit is defined as follows:

Total misfit =
∑T=368

t=1

(
qoobs(t)−qosim(t)

¯qo obs

)2

+
∑T=368

t=1

(
qgobs(t)−qgsim(t)

¯qg obs

)2

+
∑T=368

t=1

(
qwobs(t)−qwsim(t)

¯qw obs

)2

+
∑T=368

t=1

(
pobs(t)−psim(t)

¯pobs
)2

+10×δmisfit|@ t=100 (19)

where δmisfit|@t = 100 can be expanded as:

δmisfit|@ t=100 =
∑9

j=1

(
δ j,obs−δ j, sim

δ j,obs

)2

o

+
∑9

j=1

(
δ j,obs−δ j, sim

δ j,obs

)2

g

=
(

δ1,obs−δ1, sim

δ1,obs

)2

o
+

(
δ2,obs−δ2, sim

δ2,obs

)2

o

+ . . . +
(

δ1,obs−δ1, sim

δ1,obs

)2

g

+
(

δ2,obs−δ2, sim

δ2,obs

)2

g
+ . . . (20)

in which t = 1, 2, 3, . . . , 368 are the simulation time steps
(in days), and j = 1, 2, 3, ..., 9 iterates over the hydrocar-
bon fluid components. δ1, δ2, δ3 . . . , δ9 represent the mole
fractions of C1, C2, C3, . . . , C7+. In above equations, p
is the well pressure, q is the surface production rate, the
subscripts obs and sim represent the observed and the simu-
lation data, and the subscripts o,w, and g indicate oil, water,
and gas phases. As such, (δ1,obs)o represent the measured
(observed) mole fraction of C1 in the oil phase at the sepa-
rator. δmisfit|@t=100 is the summation of composition misfits
for all components in the separator fluid (oil and gas) that
is calculated from the measured separator sample and the
simulation output after 100 days of production.

As it was noted in the manuscript, the in situ fluid com-
position is also an unknown vector to be estimated by the
GP-based optimization algorithm (Table 1, parameters X11
to X19). The initial ranges of the in situ fluid mole fractions
for each component in the history-matching are determined
by considering various published data for gas condensate
fluids and by consulting the operating company. Therefore,
at each iteration of the history-matching process an in situ
fluid vector is generated that is used to perform the com-
positional simulation. To calculate δmisfitt|@t=100, we run
the simulation using the generated composition (and other

parameters) at each iteration, and then after performing the
simulations we extract the mole fractions of the produced
hydrocarbon fluid (oil and gas) at the separator condition
at time step 100 (days). The extracted mole fractions from
the simulations are compared with the available separator
sample data, which are subsequently used to compute the
overall composition misfits from Eq. 20. Note that we only
have one reliable measured separator sample that was taken
after 100 days of production. The overall composition misfit
(δmisfitt|@t=100) is multiplied by 10 to be in the same range
as the other misfit components. This number has been deter-
mined by comparing the individual misfits calculated from
many sensitivity runs before starting the history-matching
process.

6.1 Convergence

The performance of GP-based optimization method is mea-
sured using the current best samples that have the lowest
misfit at each iteration (i.e., a regret value). An initial pop-
ulation with 10 random members is uniformly generated
from the parameter space and the reservoir simulations are
performed to calculate the total misfits for this initial pop-
ulation. We set a budget of 200 affordable simulations for
any single optimization run and we repeat our procedure 20
times. For this problem, the efficiency of GP-based opti-
mization algorithm for history-matching is reported by tak-
ing an average over the current best misfits for all GP-based
optimization runs and presenting the associated standard
deviations. This is to minimize the effect of randomness in
the initial population that might mislead the performance
outlook.

As the iterations progress, more samples become avail-
able and the predictive performance of the GP model
increases. This could lead to a misfit reduction over almost
two orders of magnitude in around 100 simulations. The
computational efficiency of the GP-based optimization is
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relatively cheap for small number of samples (<500) and
moderate dimensions (<20). Figure 8 displays the aver-
age performance of the best models and the overall spent
time resulting from the convergence of 20 individual opti-
mization trials. The error bars only represent the standard
deviations of the regret values at each iteration that are
obtained from 20 optimization runs. The overall match
quality for such a limited number of simulations in each
optimization trial is relatively efficient. The correspond-
ing history-matched curves for the rates and compositions
are shown in Fig. 9. In this problem, we could not further
improve the quality of the match particularly for the seper-
ator oil compositions. Although, this could be likely due to
the existence of some errors in the sample data or the use
of a simplified model in our simulations, the limited data
available to this study does not allow us to conduct a robust
conclusion. However, for this particular exercise, the rather

poor match for the lighter components would not jeopardize
the expectations as other production data are satisfactorily
matched.

7 Discussion

The matched parameters for the best model, out of all the
GP runs with the lowest misfit, are listed in Table 2. These
results fully describe a simplified 1D model that is used to
approximate the well and reservoir performance. Despite its
simplicity, the average response of the subject well is ade-
quately simulated. This is in good agreement with the results
of [39] obtained from the DE algorithm after 1300 simu-
lation runs. This indicates an almost 10-time improvement
in the misfit convergence for the similar problem when the
GP is used. This point is indicated in Fig. 10, in which the
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Fig. 9 The observed and the average history-matching results for
pressure (a); oil, gas and water rates (b–d); and separator fluid compo-
sition (e, f). The grey shaded area around the average response (black

curves) represents the standard deviation of the best model responses
from a course of 20 different single-objective GP runs
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Table 2 The best case solution vector obtained from 20 different GP
runs

X1 0.27 X11 0.84

X2 0.45 X12 0.072

X3 0.000265 X13 0.038

X4 0.010 X14 0.0071

X5 128.59 X15 0.0108

X6 0.76 X16 0.0045

X7 2 X17 0.0038

X8 3.43 X18 0.0046

X9 3.98 X19 0.0142

X10 3.86 X20 0.00002

Total misfit 50

current best misfits for the two DE and GP runs are dis-
played. For reservoir history-matching problems with larger
models, this result is particularly appealing because running
thousands of simulations is not practically feasible for many
industry practitioners.

According to this solution, the fracture propagation has
created an improved permeability in the SRV, which has 37
times better conductivity than the matrix. The initial mov-
able water saturation is 0.27 in bulk and 0.45 in the SRV.
Parameters X5 to X19 construct a PR-EOS model for a
lean gas condensate fluid with 1.4 % of C7+ that has a
maximum liquid drop out of 1.16 % and a dew point pres-
sure of 2437 psi at the reservoir temperature of 162 ◦F
from the Constant Composition Experiment (CCE) tests.
Finally, X20 imposes a function with a negligible reduction
of propped permeability for the entire production period,
which is in line with the other observations in the nearby
areas of the subject well in this field [124].

We should also note that the GP models are used to
approximate the misfit functions and are not suited to
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Fig. 10 The convergence of the two GP runs in comparison with the
DE’s ones. An almost 10-times quicker convergence is obtained using
the GP for the problem studied in this paper

directly predict the future production trends. However, it
should be possible to propagate the cross validation score
(or, e.g., the posterior variance at the calibrated point) of the
GP model to the calibrated simulation model to add confi-
dence bounds. In addition, for some problems, the final GP
model might be used as a surrogate to perform a Markov
chain Monte Carlo sampling to quantify the approximate
importance of the model parameters [7, 57]. In this context,
the posterior distributions of the physical model parameters
can be estimated to perform forward modeling and predic-
tions. This process, can be strengthened if the generated
samples from various repetitions can be collected for a bet-
ter exploration of the space in the case we have multiple
solutions. For these situations, we have to re-build a one-
time GP model using all samples. GP models, and other
proxy models, can also be applied to time series data and
provide predictive capabilities [127] to determine the future
trends (forecasting) [128]. This could be an additional step
after the history-matching problem was solved in this prob-
lem. However this would require generating more data to
train the GP time series model.

7.1 The impact of correlation function

The correlation function is the heart of GP modeling as it
determines the smoothness of the samples which are drawn
from it. In geostatistical problems, we can have a rather clear
sense of the variogram type from the measured well data
with fitting a suitable model to the experimental variogram.
However, in the GP-based optimization methods, we usu-
ally do not know a prior the information about the types of
the correlation functions. Nevertheless, the stationary Gaus-
sian and Matérn functions are amongst the popular choices
for optimization problems [129]. While the Gaussian cor-
relation function works really well for many benchmark
functions, it imposes unrealistically smoothness assump-
tions (it assumes the underlying response surface is infinite
differentiable) [130]. The Matérn class of correlation func-
tions is often advised over the more (historically) popular
Gaussian correlation function for many real problems [131,
132]. Interestingly, the Gaussian kernel is a special case of
the Matérn correlation function when ν → infinity [133].
There is no straightforward procedure to choose the opti-
mal smoothness parameter ν and this issue is considered
as an open question [53]. Van der Vaart and van Zanten
[134] presented an approach where the GP models could
automatically adjust to the smoothness parameter. How-
ever, in their approach, the estimated correlation lengths
have a tendency to zero, leading to practical and theoretical
challenges [53]. Nevertheless, the Matérn correlation func-
tions with ν = 3/2 and ν = 5/2 are the most commonly
used variants of this family which are analytically tractable
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and have been successfully used in many studies. Similar
to many other studies (e.g. [135, 136]), in our experience
for many optimization and history-matching problems, the
Matérn class with ν = 3/2 provides good results with favor-
able convergence rate. In this work, some sensitivities are
performed to understand the performance of GP-based opti-
mization algorithm using different correlation functions.
Figure 11 shows the impact of Matérn (with ν = 3/2),
Exponential, Gaussian, and spherical functions on the regret
values for a similar problem as studied in this paper. A
similar initial population with 20 members from a space-
filling Latin-Hypercube design is used in all optimization
runs. Figure 11 indicates that the Matérn and Gaussian cor-
relation functions can provide a better performance with
lower misfits. A consistent reduction of the regret value is
observed for the Matérn function, while the spherical corre-
lation does not show a substantial systematic improvement
within the affordable evaluation budget of 250 simulations.
Although, the spherical covariance can be indeed consid-
ered as an intermediate class in smoothness between the
exponential and Gaussian, it carries some characteristics
that cannot be readily interpreted in terms of the conver-
gence rate. In particular, the spherical covariance function
has a finite range (compact support) meaning the covari-
ance is reduced to zero if the distance between two points is
greater than some threshold, which depends on its hyperpa-
rameters. Covariance functions with compact support often
lead to ill-defined covariance matrices for certain hyperpa-
rameters combination which can result in a more difficult
hyperparameter optimization process. More importantly, as
in our work, the spherical covariance function does not guar-
antee positive-definiteness anymore above three dimensions
[137, 138]. Consequently, the optimization may get stuck in
local optima which are suboptimal with regards to the other
covariance functions.
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Fig. 11 The impact of various correlation functions on the perfor-
mance of a GP-based optimization method by reducing the regret.
Similar initial samples have been used for all cases

7.2 The impact of initial design

Finding the optimal size of the initial training set is an open
problem; one rule-of-thumb is to choose it as 10 × d + 1
where d is the dimension. However, this depends on the
complexity and the dimension of the problem. The distri-
bution of points is important for the GP models, and is
preferred to be relatively uniform and space filling. In lit-
erature, often, an optimized maximin Latin Hypercube is
used [139, 140]. However, generating such a distribution
of points becomes infeasible in higher dimensions such as
in this paper. One should note that if the number of ini-
tial points is too low, the GP model is prone to deceptive
data [23], where data is distributed in such a way that the
GP model can fit it very well (e.g., the data might resemble
a Gaussian), discouraging further exploration. It is known
that the posterior variance of the Kriging model is an under-
estimation of the true error [141]. However, this can be
solved in various ways such as applying a full Bayesian
analysis to the Kriging model. A popular approach is to
use slice sampling over the hyperparameters [142], to effec-
tively construct multiple Kriging models. The final posterior
variance is then an average of the posterior variance of all
Kriging models (similarly for the prediction).

In summary, the quality of the GP models and their
abilities to effectively search for the global solutions are nat-
urally dependent on the quality and the location of the initial
samples. Intuitively, if the initial samples can better cover
the sampling space, a more reliable GP model can be fitted
to the data and the search for the global solutions would be
easier.

8 Conclusions

In this work, we applied the GP surrogate modeling
approach for the history-matching purposes. We examined
the efficiency of the GP-based optimization methods com-
pared to the DE algorithm and a quasi-Newton optimization
method using the IC fault model for global optimization.
The results showed that a larger reduction in the misfit is
achieved for less function evaluations when the GP-based
method is used. This suggested the effectiveness of the
GP modeling for reservoir history-matching problems when
running thousands of numerical simulations is not feasible.
We then demonstrated the efficiency of this approach for a
real 20-dimensional problem in a real tight gas condensate
well. The compositional simulations were used to simu-
late the hydrocarbon and water rates, as well as the fluid
composition sample at the surface. The main motivation
for this exercise was to quickly and efficiently character-
ize the in situ fluid and well/reservoir parameters using
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numerical methods and to handle the nonlinearities that are
the stumbling blocks to the application of analytical models.
Previous work used the power of population-based methods
for such tasks, which required a large number of unnec-
essary simulation runs. The results showed that by using
a GP, one could significantly reduce the number of simu-
lations by around 10 times. Moreover, the effect of initial
designs was discussed and some sensitivities were per-
formed to understand the effect of the correlation functions
on the performance of the GP-based optimization method.
The results showed that a better performance is expected if
the Matérn correlation function is used in conjunction with
a space-filling initial design.
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144. Lataniotis, C., Marelli, S., Sudret, B.: UQLab user manual—
kriging, chair of risk, safety & uncertainty quantification, ETH
Zurich report# UQLab-v0.9-105 (2015)

http://dx.doi.org/10.1016/j.asoc.2013.11.005
http://dx.doi.org/10.1016/j.jspi.2010.04.018
http://eo2.commpartners.com/users/spe/session.php?id=10329
http://dx.doi.org/10.2118/18530-PA
http://dx.doi.org/10.1016/j.jngse.2014.11.005
http://dx.doi.org/10.2118/10224-pa
http://dx.doi.org/10.1016/j.csda.2004.02.006
http://arxiv.org/abs/1302.4245
http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/0908.3556
http://dx.doi.org/10.1007/s00158-013-{\penalty -\@M }0919-4
http://www4.ncsu.edu/ykao/docs/lab{%}203/estimation{%}20and{%}20modeling{%}20of{%}20sptial{%}20correlation.pdf
http://www4.ncsu.edu/ykao/docs/lab{%}203/estimation{%}20and{%}20modeling{%}20of{%}20sptial{%}20correlation.pdf
http://dx.doi.org/10.1007/s10182-010-0142-1
http://dx.doi.org/10.1016/0378-3758(94)00035-T
http://dx.doi.org/10.1007/s10898-011-9741-y
http://arxiv.org/abs/1006.0868

	Gaussian Processes for history-matching: application to an unconventional gas reservoir
	Abstract
	Nomenclature
	Introduction
	Proxy modeling and prediction
	Frequentist analysis of ordinary Kriging
	Bayesian interpretation of ordinary Kriging

	Expected improvement
	The GP-based optimization workflow
	A note on the dimensionality of the GP-based optimization method
	Possible routes for the extension of GP-based optimization method for multiple poro-perm realizations
	The efficiency of the GP-based optimization approach
	(a) Quasi-Newton methods
	(b) Differential Evolution



	Application example
	Results
	Convergence

	Discussion
	The impact of correlation function
	The impact of initial design

	Conclusions
	Acknowledgments
	Compliance with Ethical Standards
	Conflict of interests
	Funding
	References


