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Summary 

 

Markov chain Monte Carlo (McMC) is a technique to sample the posterior distributions in order to quantify the 

uncertainty and update our knowledge about the model parameters. However, this technique is 

computationally costly. Therefore, it is frequently combined with a cheap-to-evaluate proxy model. Building an 

efficient and accurate proxy model using one-shot sampling method (such as Latin-Hypercube) is a challenging 

task as we do not know a prior the best sample locations and the number of required samples to tune our proxy 

model.  In this paper, we present a novel adaptive sampling techniques using LOLA-Voronoi and Expected 

Improvement techniques to sequentially update our proxy (here ordinary Kriging model) using best sampling 

locations and density. This algorithm is used to balance between the exploration and exploitation to create an 

accurate proxy model for the IC fault model’s misfit function. The results show a large improvement comparing 

to the one-shot Latin-Hypercube design. The built proxy is then employed to reduce the computational cost of 

McMC process to find the posterior distributions of the model parameters. 
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Introduction 
The Bayesian framework is a statistically consistent way to update our knowledge about the model 
parameters using the observations (Christie et al., 2006). The Bayesian framework is formulated as: 

f 𝐦 𝐘$ = αf 𝐦 L 𝐦 𝐘$ 1 

in which, m is a set of unknown model parameters, f(m) is our prior belief about the model parameters, 
f(m|Yo) is the posterior distribution, L(m|Yo) is the likelihood (representing a mismatch between the 
numerical model response and the observed data), and ∝ is a normalizing constant.  
Markov chain Monte Carlo (McMC) (Metropolis et al., 1953) is a statistical technique which can be 
used to evaluate Equation 1 by generating a chain of dependent samples from a stable (high 
dimensional) posterior distribution (Privault, 2013; Vrugt, 2016). Each new location (sample or set of 
parameters) in the chain is obtained by moving from the current location with a probability that only 
depends on the current location. The dependency between two successive samples in the chain is a 
controlling factor in McMC (Mariethoz and Caers, 2014).  
One of the practical computational issues in performing the McMC is that it requires a large number of 
costly samples (simulations) to be evaluated. To solve this issue, the surrogate modeling is employed 
to reduce the computational cost. A surrogate model (e.g. Kriging) is usually built by selecting a 
mathematical function that is tuned by drawing a few (intelligent) samples from the original system and 
observing the outcomes.  
Traditional experimental design methods such as Latin-Hypercube (Santner et al., 2014) create a certain 
number of samples in one-shot, then after evaluating the output of all samples a one-time static surrogate 
model is built. If the system is not very complicated (e.g. linear), only a few samples can be used to 
build a proxy model to mimic the true response. However, sometimes the true complexity of the 
underlying function is large and it requires a large number of sample evaluations before an accurate 
proxy is built. This indicates the issues of under- and over-sampling which arise from the use of one-
shot experimental designs. The deficiency in that we do not know a prior how many samples to choose 
can immediately show that such static sampling strategies could provide inefficient and/or inaccurate 
surrogate models which are of little use in the McMC process. In addition, the one-shot sampling 
strategies rely only on the input parameters and no information from the output is used to design better 
sample configurations. Therefore, they are only exploratory designs which fail to exploit the regions of 
interest with various nonlinearities. Example of traditional sampling methods for building a proxy is 
that of Yang et al. (2015) who presented a surrogate-based workflow for probabilistic forecasting using 
Radial Basis Functions.  
Adaptive or sequential sampling strategies, on the other hand, analyze the output of each sample and 
select the next samples in the nonlinear regions of the true objective function or places that multiple 
optima are located. Therefore, only a limited number of samples are used to define a final surrogate 
model. Adaptive sampling strategies construct and tune a new surrogate model at each iteration.  These 
approaches use the one-shot methods as starting points and then make a trade-off between exploration 
and exploitation. One of the more recent powerful Monte Carlo-based methods for adaptive sampling 
is Local Linear Approximation (LOLA)-Voronoi (Crombecq et al., 2009) or its high dimensional 
counterpart FLOLA-Voronoi (van der Herten et al., 2015). These methods can balance between the 
exploration and exploitation and therefore can be suited for optimization or uncertainty analysis using 
the surrogate modeling approach. The LOLA-Voronoi can even be combined with other optimization-
based infill criteria such as Expected-Improvement (Jones, 2001) which finds the next best samples by 
computing the improvement we expect, compared to the current best value of the objective function. 
With help of an adaptive sampling method, we can intuitively construct an appropriate global proxy 
model that can replace the misfit function surface. This can facilitate the samplings and accelerate the 
McMC process.  
In this paper, we implement an adaptive sampling method to build a tuned ordinary Kriging model that 
can be used to generate the posterior distributions of the model parameters for the IC fault model 
(Tavassoli et al., 2005).  

Example: The IC fault model 
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The IC fault model is a 2D multi-layer faulted cross-sectional model with an injection and a producing 
well. The wells are separated by a single fault with a variable throw, which controls the flow between 
the left and the right blocks of the model. The reservoir thickness is 60 ft with six alternating layers of 
high and low quality facies. The full discussion of the objective function can be found in (Tavassoli et 
al., 2005). To perform the model calibration, a truth case is generated by choosing h=10.4 ft ∈ [0, 60], 
khigh=131.7 md ∈ [100, 200] and klow=1.31 md ∈ [0, 50]. The production rates of the truth model with 
some added Gaussian noise represent the known observed data. We assume that the truth model 
parameters are unknown and that we only know the prior range of the parameters. 
The aim is to update our prior knowledge about the reservoir from a set of non-informative (uniform) 
prior probabilities assigned to the model parameters. The McMC process requires an extensive sampling 
from the priors and examines how well the production rates fit the observations using the following 
misfit definition 
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in which, T is the number of observations, qp represents oil and water rates, sim and obs indicate the 
simulation and observed data respectively, and σ=0.03×qp

obs represents the measurement error. With 
the assumption of Gaussian distribution, the misfit function represents the negative log likelihood 
function which is used in the Bayes’ rule. The lower the misfit value, the higher probability assigned to 
the corresponding model parameters. 
To obtain the posterior distributions we need to evaluate a large number of model misfits which is not 
computationally feasible. Hence, to accelerate the McMC sampling process an efficient and accurate 
(enough) surrogate model is built. In this paper, we use the ordinary Kriging which is dynamically tuned 
when new samples are iteratively added by an adaptive sampling scheme. The tuning is referred to as 
selecting the best hyper-parameters (i.e. the covariance’s length scales) that control how well the 
surrogate model can fit the data. This is usually involved with some optimization routines such as 
maximum likelihood estimation. For this problem, an initial population with 50 models is generated 
using a space filling Latin-Hypercube design and the black oil flow simulations are performed using 
tNavigator (Rock Flow Dynamics, 2016) to obtain the misfit values. tNavigator is designed to run 
parallel acceleration algorithms on multicore and manycore shared and distributed memory computing 
systems. The LOLA-Voronoi is then used to sequentially improve the quality of the selected surrogate. 
The LOLA-Voronoi can help construct a global surrogate by sampling from important areas of the 
parameter space to balance between the exploration and exploitation. The exploitation phase is used to 
make samples from the non-linear locations of the misfit function. This is achieved by constructing the 
gradients of the objective function using the nearby points (Crombecq et al., 2009). Therefore, for the 
places that we have a steeper slope (i.e. higher uncertainty), there are higher chances of nonlinearities 
which are needed to be focused. This algorithm needs to be coupled by the Voronoi-tessellation-based 
exploration component which is used to rank the samples based on the Voronoi cell size which is 
indicative of whether this region is under-sampled. The Voronoi part of the algorithm is similar to the 
Neighborhood Algorithm proposed by Sambridge (1999) which has already been used in many 
reservoir engineering applications. Because the IC fault model’s misfit surface is a complicated surface 
with many steep local minima, the Expected Improvement statistical criterion is combined with LOLA-
Voronoi to enrich the sampling process in the areas that global minima reside. After each iteration, a 
new sample is proposed and the flow simulation is invoked to calculate the new misfit value and to 
update the surrogate model with the augmented data set. Our sampling budget is set to 400, which is 
the maximum number of flow simulations that we can run, but also affordable. The final surrogate 
model is cheap-to-evaluate, which can represent the likelihood function for the extensive sampling 
required in the McMC process. Figure 1 (left) compares the efficiency of the adaptive sampling method 
in constructing a tuned kriging model from 400 samples to represent the IC fault model’s misfit 
function. The figure portrays the misfit value versus the fault throw for the two fixed parameters Khigh 
and Klow that are fixed to their corresponding truth values. This figure shows that using a one-shot Latin-
Hypercube design (with 400 samples), we are unable to capture the complexity of the truth misfit 
surface particularly in the regions close to the steep global minimum. Figure 1 (right) shows the 
modelled misfit surface using the ordinary Kriging fitted to the samples from adaptive sampling 
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procedure. The black circles (i.e. the samples) are the samples proposed by LOLA-Voronoi and 
Expected Improvement, which are distributed non-uniformly to capture the areas with larger non-
linearities. In this plot (Figure 1; right), Klow is fixed to its truth value of 1.3 md. 

Figure 1 Left: The accuracy and the efficiency of the adaptive sampling method to represent the IC fault’s misfit 
surface by a Kriging proxy model as a function of fault throw. Right: The complexity of the modelled misfit 
function using Kriging. More samples are placed in the interested areas where the global minimum resides.  

The final tuned kriging model is used to approximate the posterior distributions. In this paper we use, a  
multi-chain Differential Evolution Adaptive Metropolis method (Vrugt et al., 2009) which is proved to 
have a superior performance compared to the classical and other single chain adaptive Metropolis 
methods (Vrugt, 2016). The McMC algorithm is initiated with 7 chains and this is repeated for 100000 
generations. The acceptance rate is around 20% and convergence is achieved quickly. The convergence 
is assessed by R-statistics of Gelman and Rubin (1992) (when R̂<1.2). Figure 2 shows the trace plots 
(left) and the marginal distributions of the posterior samples (right). The chains display a good mixing 
behavior while the modes of the distributions are located close to the truth values. The posterior samples 
can be eventually used to run the forward numerical simulations by a Monte Carlo sampling to provide 
the forecast statistics (P90-P10-P50) of the future production. 

Figure 2 The trace plots of the sampled chain trajectories (left) and the marginal posterior distributions of the IC 
fault model obtained from a proxy-based McMC process (right).  

Conclusions 
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In this paper, we presented a new method for accelerating the McMC process using a proxy-based 
method that is tuned by an adaptive sampling scheme (i.e. LOLA -Voronoi and Expected Improvement). 
The adaptive sampling method can sequentially update the Kriging proxy to create an accurate model 
by observing the simulation model outputs (i.e. misfits) to increase the sample density in the nonlinear 
regions. We applied this method to the IC fault model that has a very complicated misfit surface. The 
Kriging proxy was constructed using 400 samples that showed a large improvement comparing to the 
one-shot Latin-Hypercube design. The proxy model was successfully used to efficiently perform the 
McMC to find the posterior distributions. This paper is towards defining an efficient framework for 
model calibration and uncertainty quantification to reduce the computational cost. 
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