
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS VOL. 23, NO. 1, JANUARY 2017 821

Manuscript received 31 Mar. 2016; accepted 1 Aug. 2016. Date of publication
15 Aug. 2016; date of current version 23 Oct. 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2016.2598866

1077-2626 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
 See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Decal-maps: Real-Time Layering of Decals on Surfaces for
Multivariate Visualization

Allan Rocha, Student Member, IEEE, Usman Alim, Member, IEEE, Julio Daniel Silva, and Mario Costa Sousa

Fig. 1. (a) Vector field visualization using decal-maps, notice how the brush strokes’ decals deform to represent vectors. (b) We cover
the bunny with decals. (c) Illustrative visualization of nuclear power plants in the United States. (d) Illustrative visualization of six
attributes on top of a petroleum reservoir model, namely, rock type, porosity, and directions and magnitudes for oil and water flow. (e)
Illustrative visualization of a water-oil simulation time-step, on top of a reservoir model.

Abstract— We introduce the use of decals for multivariate visualization design. Decals are visual representations that are used for
communication; for example, a pattern, a text, a glyph, or a symbol, transferred from a 2D-image to a surface upon contact. By creating
what we define as decal-maps, we can design a set of images or patterns that represent one or more data attributes. We place decals
on the surface considering the data pertaining to the locations we choose. We propose a (texture mapping) local parametrization that
allows placing decals on arbitrary surfaces interactively, even when dealing with a high number of decals. Moreover, we extend the
concept of layering to allow the co-visualization of an increased number of attributes on arbitrary surfaces. By combining decal-maps,
color-maps and a layered visualization, we aim to facilitate and encourage the creative process of designing multivariate visualizations.
Finally, we demonstrate the general applicability of our technique by providing examples of its use in a variety of contexts.

Index Terms—Multivariate, Visualization, Real-time, Decal, Surface, Layering, Design

1 INTRODUCTION

Technological advances have led to an increase in data acquisition in
several areas of science and applications. In these domains, experts
explore multivariate tridimensional data to understand certain phe-
nomena. For example, doctors explore hemodynamic attributes (e.g.
wall shear stress and the inflow jet) coming from cerebral aneurysm
data [13]; engineers analyse flow attributes (e.g. velocity, vorticity)
computed from flow simulations [3]; and geologists explore geologi-
cal properties (e.g. porosity, permeability) coming from 3D reservoir
models [39]. Therefore, multivariate visualizations are essential to fa-
cilitate the process of data exploration. Moreover, tridimensional data
is commonly explored in terms of surfaces due to its complexity. In the

• Allan Rocha, Usman Alim, Julio Daniel Silva, and Mario Costa Sousa are
with the University of Calgary. E-mails: rocha.allanc@gmail.com,
ualim@ucalgary.ca, juliodaniel@gmail.com, smcosta@ucalgary.ca

previous examples, the surfaces can encode one or more attributes that
need to be interpreted and correlated for decision making. However,
what to visualize and how to visualize multiple attributes in a single
view [12, 38] are still key visualization challenges to address.

Layering techniques [16] try to visualize multiple attributes com-
bining glyphs, colors and textures [59]. Analogically, the concept of
layering refers to the way that an artist creates oil paintings on a 2D
canvas. In visualization, layering techniques overlay data attributes
mapped to a visual representation (e.g. glyphs, colors, textures) onto
a plane or screen. They explore the empty space between objects and
the transparency between layers. For example, 2D flow visualizations
combine arrow glyphs and color to represent magnitude and direction
of a vector field [3]. Another example is geo-visualization where we
commonly see glyphs, colors, lines, and text overlaid on maps (e.g.
Google Maps). In 2D, layering techniques have been successfully ex-
plored in information and scientific visualization [12, 16, 27, 59].

On surfaces however, layering techniques have received less atten-
tion. Most of the extant techniques combine a texture-based approach,
such as line integral convolution (LIC) [5] with color-maps [17, 23].
Additionally, the number of co-visualized attributes on surfaces is re-
duced when compared to 2D layered visualizations. For example,
Kirby et al. [19] design a 2D layered visualization with six to nine

822 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 1, JANUARY 2017

flow attributes, whereas on surfaces, the number is limited to two or
three. On surfaces, we need to consider more complex variables such
as curvature, depth and occlusion. Therefore, the layering of glyphs,
textures, colors and other visual variables on arbitrary surfaces is not
straightforward. Nevertheless, since surfaces are two-dimensional ob-
jects, a natural extension of the work of Kirby et al. [19] is to create
illustrative layered multivariate visualizations on surfaces.

In this work, we introduce the concept of decals for multivariate
visualization design. A decal is a pattern or image printed on a material
(e.g. plastic or paper) to be transferred to another surface upon contact
(a process called decalcomania) [32]. Decals are designed and used
for several forms of expression and communication. They can encode
information in the form of glyphs, textures, text or other visual signs.
In computer graphics, decals are commonly used for their aesthetic
value; artists place and edit decals on 3D models to create characters
and scenarios for games and animations [32, 45].

Decals can represent multivariate data via a decal-map: a set of
patterns or images designed to represent one or more data attributes.
Decal-maps can be 1D (array of images) or 2D (matrix of images).
For example, a set of arrows of different sizes and colors is a case of
a 1D decal-map and a matrix of images representing variations of a
tensor is a 2D decal-map. By designing decal-maps, we can create
complex glyphs (e.g. Chernoff Faces [7]) encoding data and semantic
information. We can also use elements such as texture patterns, shapes
or normal maps for this purpose. Additionally, we can explore visual
variables such as position (e.g. using importance sampling) and size
to represent data [40]. It is by combining layering techniques and
decal-maps that we design multivariate visualizations. For example,
Fig. 1(d) shows the visualization design of six geological attributes;
it combines decal positions, decal-maps and a pastel color-map in a
layered fashion. Thus, decal-maps provide a new way of visualizing
data by giving more freedom to design glyphs and patterns to represent
multivariate surface data.

In order to place decals on surfaces, we need a texture map-
ping technique with the following three requirements. 1) It should
be independent of the surface parametrization (texture coordinates)
since many scientific datasets are not represented parametrically; 2) it
should not rely on topological information from the underlying mesh
such as geodesic distance because this is expensive to compute and
depends on the mesh type; and 3) it should be efficient as we need
a high number of decals to represent data attributes in several loca-
tions of the surface. These requirements are stringent and are not met
by many established decal placement techniques such as path-based
methods [32,37] and exponential maps [45]. Deferred decals [20] and
implicit decals [10] are an exception and can render a high number
of decals interactively via local texture parametrizations. Inspired by
these techniques, we propose a simple technique called layered de-
cals that is specially designed for multivariate surface visualizations.
Our technique relies on the observation that the intersection between
a solid sphere and a surface is a disk. We denote this intersection as
a sphere mask. Using sphere masking, we can compute a local tex-
ture parametrization and map decals that follow the surface geometry.
Our technique is flexible and can handle overlapping decals as well as
multiple layers of decals.

The main contributions of this paper are:

• Decals as a form of representation for visualization design, from
observing the use of 2D-glyphs and textures in scientific and infor-
mation visualization.

• The concept of decal-map to represent and visualize multivariate
data on surfaces.

• A real-time technique to place decals on surfaces using a local (tex-
ture mapping) parametrization.

• Inspired by Kirby et al. [19], we extend the concept of layering to
allow the co-visualization of an increased number of attributes on
surfaces.

• A multivariate illustrative visualization design for geological data
to visualize, for the first time in the domain, six attributes simulta-
neously.

• An abstract framework applicable to a variety of contexts.

We provide concrete examples for geological and geographic
datasets in order to validate our technique and demonstrate how mul-
tivariate visualizations on surfaces can be designed (Sec. 5). It is im-
portant to mention that our work was envisioned by researchers such
as Crawfis and Allison [9], Laidlaw et al. [22], Kirby et al. [18], and
Taylor [50] many years ago. Our goal is to bring back the concept
introduced by them, showing that it can be used to create illustrative
multivariate visualizations on surfaces.

2 RELATED WORK

We believe that visualizations applied to planes also provide useful
guidelines to design layers for surfaces. Therefore, we present three
main topics related to our work: glyph-based visualization, layering
techniques, and decals on surfaces.

2.1 Glyph-Based Visualization on Surfaces

Design and Guidelines: Glyphs are widely used in visualization to
represent multivariate data [1, 58]. Ropinski et al. [40] propose a tax-
onomy that classifies glyph-based techniques applied to spatial medi-
cal data. They distinguish between pre-attentive (visual elements that
catch our attention quickly) and attentive (elements that need focused
attention due to existent distractors) glyph properties. Following a
broader approach, Borgo et al. [1] survey the state of the art of glyph-
based visualization techniques. Their work takes a holistic overview
of these visualizations in terms of concepts and theory, design guide-
lines, algorithms and techniques, and applications. They also discuss
the historical use of glyphs as visual signs for communication.

Since 2D glyphs can be used as decals (on surfaces), we argue that
the guidelines introduced by Ropinski et al. [40] and Borgo et al. [1]
are very relevant to the problem of designing decal-maps for surfaces.

Two Dimensional Glyphs on Surfaces: Some works explore
image-space approaches to visualizing glyphs that encode scientific
data. Peng and Laramee present an image-space glyph placement tech-
nique to visualize boundary flow [34]. Their technique projects a vec-
tor field to the R,G,B, and alpha color channels in image-space. Using
arrow glyphs, they visualize direction and magnitude (arrow color)
of a vector field defined on complex adaptive meshes from computa-
tional fluid dynamics (CFD). Later, Peng et al. used this image-space
approach to develop a robust and automatic clustering algorithm that
combines the properties of the underlying vector field and mesh into
a unified error-driven representation [33]. For tensor data, Chen et
al. propose an image-space technique to visualize asymmetric tensor
fields using evenly-spaced hyperstreamlines and elliptical glyphs [31].
While these image-space techniques are definitely useful, they can
lead to flickering, popping and other perceptual artifacts during inter-
action such as the so-called ‘shower-door effect’; the animated model
appears as if it is seen through a textured glass door [26]. These prob-
lems are avoided by rendering the glyphs only when the user stops
interacting with the model. In our case, these perceptual issues do not
occur since we apply decals to surfaces in object space.

In object-space, the problem of using 2D glyphs to encode data
on surfaces is relatively less explored. Sanyal et al. use glyphs, rib-
bons and spaghetti plots to visualize ensemble uncertainty in weather
data [41]. Pelt et al. design and place four 2D glyphs (disk, flower,
web and time variation strips) on a surface extracted from aneurysm
data to explore wall shear stress [56]. The design of these glyphs is
inspired by information visualization. Using these glyphs, they imple-
ment a details-on-demand approach that places glyphs on the surface
of the aneurysm model depending on the level of zoom during data
exploration. In cardiac visualization, Termeer displays a 2D glyph on
the surface of the epicardium to represent perfusion data [51].

For the placement of 2D glyphs in object-space, a common tech-
nique (such as the one used by Pelt et al. [56]) is to create an oriented
quad on the surface and generate texture coordinates to map or design
a desired glyph representation. However, this approach has its limita-
tions. The quads can be clipped by the surface depending on factors
such as the size and number of glyphs, and the curvature of the surface.
An attempt to avoid the clipping process is to offset the glyphs from
the surface, which can lead to the glyphs flying in space (Sec 4.6). In

contrast, our approach avoids these problems by mapping decals so
that they follow the curvature of the surface.

2.2 Layering Techniques on Planes and Surfaces
Layering refers to a multi-pass rendering technique where each data
field is mapped to a visual representation [4]. Following an artistic
analogy, this technique is similar to the way artists paint, for example,
background as first layer, large objects as second layer and details as
third layer. Using proper visual encoding and concepts of painting,
Kirby et al. [19] were able to display 6–9 data values from a 2D flow
dataset. In biological science, Laidlaw et al. apply layering techniques
to visualize diffusion tensor images of the mouse spinal cord [22]. This
technique also follows a painting metaphor and layers up to four at-
tributes on a 2D slice of the volume data. More recently, Schroeder et
al. present a sketch-based interface to create multivariate visualiza-
tions based on concepts of art and brushing [46]. In short, these works
emphasize that art can give good insight into creating visualizations of
multiple attributes. In addition, it can also increase the aesthetics of
the visualization [15, 21, 49, 53].

Crawfis and Alisson present a novel approach to visualize multiple
attributes on surfaces using texture mapping and color [9]. Later, Tay-
lor examines several approaches for the representation of multiple at-
tributes using visual variables such as color, texture, and density [50].
Another example of layering can be found in cardiac visualization.
Termeer creates a multivariate visualization on the epicardium surface
encoding three quantities: functional data (wall thickening) using a
color coding, perfusion data using 2D glyphs of varying sizes, and
scar displayed using a striped pattern overlay [51].

Many layering techniques have been applied to flow visualiza-
tion [3, 23, 25]. These techniques either combine multiple 2D vector
fields based on texture and color [54, 55], or display 3D vector fields
on layered surfaces [6]. They explore techniques such as LIC [5] to
represent the direction of a vector field overlaid with another attribute
represented by a colormap. Khlebnikov et al. introduce a procedural
texture synthesis technique based on random-phase Gabor noise [17].
They can layer three attributes where the first is modulated by the tex-
ture frequency of the gabor noise, the second by the texture orientation
and the third is color coded.

Many of the designs and techniques applied on surfaces can be im-
plemented or combined with decals. Our goal is not to replace any of
these techniques but to complement them by providing a new way of
designing multivariate visualizations.

2.3 Decals on Surfaces
In computer graphics, decals are scene elements, mostly represented
as small tiles, which are individually placed on a surface via a local
parametrization of the surface [10, 45]. They are routinely used by
artists to incorporate details in 3D scenes and characters. Perdersen
was one of the pioneer researchers to create a decalling interface for
this purpose [32]. However, Perdersen’s system had several practi-
cal limitations such as the requirement of a global parametrization of
the 3D object [32]. Later, other works have proposed techniques to
apply decals locally on surfaces. Lefebvre et al. apply decals using
a technique based on hardware-accelerated octree textures and planar
projection [24]. This technique can apply decals on arbitrary surfaces.
However, Schmidt et al. argue that this introduces significant distor-
tions on curved surfaces (due to planar projection) and does not easily
support complex editing operations [45]. Schmidt et al. propose a de-
calling interface based on the exponential maps [11, 45]. Exponential
maps [45] provide a robust technique to place decals on surfaces since
they compute a local parametrization based on the geodesic distance.
More recently, Schäfer et al. present a technique that demonstrates
an efficient employment of decals by modifying and subdividing 3D
surfaces using an efficient GPU memory management scheme [42].
However, these techniques depend on the surface representation and
are not feasible when a very large number of decals needs to be posi-
tioned and displayed interactively [10].

Deferred decals [20] is another technique that has become popular
in games due to its efficiency and simplicity. It consists of convert-
ing the scene’s world-space position stored in the geometry buffer (G-

buffer) to ‘decal space’ [20] which is defined by the decal bounding
box. Texture coordinates are obtained by simply projecting the decal
orthogonally onto the surface. This technique works well for planar
and low curvature surfaces. However, for other cases such as thin sur-
faces (e.g. thin tube), areas of high curvature and at sharp edges, it
may introduce stretching or smearing artifacts due to the orthogonal
projection [20, 45]. Moreover, the decals do not properly wrap around
the surface. Stretching and smearing are alleviated by clipping or fad-
ing out the decals, a solution that is not suitable for multivariate data
visualization. Surface wrapping is improved by changing the texture
coordinates based on the surface normals. Volume decals attempt to
address some of these problems by using a volumetric decal that is
sampled by the surface [35]. However, this approach has a higher
memory consumption and is only suitable for 2D images that can be
easily extended to 3D.

Following a different approach, de Groot et al. propose a local
parametrization known as implicit decals [10]. This technique is based
on the assumption that for small decals, fine distortion control is not
required. The local texture parametrization is given by an isotropic
spherical field function centered locally at a surface position. Using
polar coordinates, the authors calculate an angular coordinate and a ra-
dial coordinate based on the Euclidean distance. Their implicit method
uses an octree representation to avoid the inclusion of all decals in
the calculation of the final texture coordinates [10]. Their results il-
lustrate that the Euclidean distance is sufficient in approximating the
surface locally, thus avoiding the far more expensive computation of
the geodesic distance [10]. However, Euclidean distance may not be
enough in areas of high curvature, introducing undesired distortions.

Our technique is inspired by both deferred decals [20] and implicit
decals [10] but has some important differences. Comparing with de-
ferred decals, instead of a box whose orientation depends on the under-
lying mesh, we place an orientation independent sphere on the surface
centered at the location where the decal is to be placed. However, the
sphere itself does not provide the area on the surface where the decal
should be placed; this is given by the part of the surface that lies in-
side the sphere (sphere masking (Sec. 3.1)). We efficiently compute
this area and texture coordinates using the G-buffer in a multi-pass
approach (Sec. 4). The main advantage of our approach over deferred
decals is that it does not compute texture coordinates via an orthogonal
projection but instead, it computes them using sphere masking which
can easily accommodate various approximations to the geodesic dis-
tance. This also differentiates our method from implicit decals which
only considers the Euclidean distance [10]. Furthermore, when com-
pared with implicit decals, our technique does not require auxiliary
data structures such as octrees or 3D textures and computes texture
coordinates only for visible decals. It is intentionally designed to lever-
age the GPU pipeline for the purpose of creating layered visualizations
of multivariate data. Inspired by this, we denote our technique as lay-
ered decals. To the best of our knowledge, we are unaware of any
other works that use decals for data visualization on surfaces.

3 DECAL PARAMETRIZATION

In this section, we describe the parametrization that allows us to place
decals on surfaces. In order to use decal-maps to visualize multiple
surface attributes, we design our technique focusing on the layering
process. We remark that this parametrization does not rely on expen-
sive computations for rendering or for texture mapping the decals.

3.1 Sphere Masking and Local Parametrization
We begin with a surface on which we want to place decals. Let us
denote this surface as M. The first problem we need to tackle is the
one of building a parametrization of this surface that would allow the
placement of decals, one at a time in an efficient manner. Since decals
are small, such a parametrization need not be global. Therefore, for
each decal, we build a local parametrization on M that is defined only
inside a Euclidean ball containing the decal.

Let us assume that the intersection of the surface M and a ball Bc,
centered at the point c in M, is a disc Dc := Bc ∩M. The disc Dc may
be understood as a patch of M over which a decal is to be placed. We
refer the reader to Fig. 2 to illustrate the discussion that follows.

ROCHA ET AL.: DECAL-MAPS: REAL-TIME LAYERING OF DECALS ON SURFACES FOR MULTIVARIATE VISUALIZATION 823

flow attributes, whereas on surfaces, the number is limited to two or
three. On surfaces, we need to consider more complex variables such
as curvature, depth and occlusion. Therefore, the layering of glyphs,
textures, colors and other visual variables on arbitrary surfaces is not
straightforward. Nevertheless, since surfaces are two-dimensional ob-
jects, a natural extension of the work of Kirby et al. [19] is to create
illustrative layered multivariate visualizations on surfaces.

In this work, we introduce the concept of decals for multivariate
visualization design. A decal is a pattern or image printed on a material
(e.g. plastic or paper) to be transferred to another surface upon contact
(a process called decalcomania) [32]. Decals are designed and used
for several forms of expression and communication. They can encode
information in the form of glyphs, textures, text or other visual signs.
In computer graphics, decals are commonly used for their aesthetic
value; artists place and edit decals on 3D models to create characters
and scenarios for games and animations [32, 45].

Decals can represent multivariate data via a decal-map: a set of
patterns or images designed to represent one or more data attributes.
Decal-maps can be 1D (array of images) or 2D (matrix of images).
For example, a set of arrows of different sizes and colors is a case of
a 1D decal-map and a matrix of images representing variations of a
tensor is a 2D decal-map. By designing decal-maps, we can create
complex glyphs (e.g. Chernoff Faces [7]) encoding data and semantic
information. We can also use elements such as texture patterns, shapes
or normal maps for this purpose. Additionally, we can explore visual
variables such as position (e.g. using importance sampling) and size
to represent data [40]. It is by combining layering techniques and
decal-maps that we design multivariate visualizations. For example,
Fig. 1(d) shows the visualization design of six geological attributes;
it combines decal positions, decal-maps and a pastel color-map in a
layered fashion. Thus, decal-maps provide a new way of visualizing
data by giving more freedom to design glyphs and patterns to represent
multivariate surface data.

In order to place decals on surfaces, we need a texture map-
ping technique with the following three requirements. 1) It should
be independent of the surface parametrization (texture coordinates)
since many scientific datasets are not represented parametrically; 2) it
should not rely on topological information from the underlying mesh
such as geodesic distance because this is expensive to compute and
depends on the mesh type; and 3) it should be efficient as we need
a high number of decals to represent data attributes in several loca-
tions of the surface. These requirements are stringent and are not met
by many established decal placement techniques such as path-based
methods [32,37] and exponential maps [45]. Deferred decals [20] and
implicit decals [10] are an exception and can render a high number
of decals interactively via local texture parametrizations. Inspired by
these techniques, we propose a simple technique called layered de-
cals that is specially designed for multivariate surface visualizations.
Our technique relies on the observation that the intersection between
a solid sphere and a surface is a disk. We denote this intersection as
a sphere mask. Using sphere masking, we can compute a local tex-
ture parametrization and map decals that follow the surface geometry.
Our technique is flexible and can handle overlapping decals as well as
multiple layers of decals.

The main contributions of this paper are:

• Decals as a form of representation for visualization design, from
observing the use of 2D-glyphs and textures in scientific and infor-
mation visualization.

• The concept of decal-map to represent and visualize multivariate
data on surfaces.

• A real-time technique to place decals on surfaces using a local (tex-
ture mapping) parametrization.

• Inspired by Kirby et al. [19], we extend the concept of layering to
allow the co-visualization of an increased number of attributes on
surfaces.

• A multivariate illustrative visualization design for geological data
to visualize, for the first time in the domain, six attributes simulta-
neously.

• An abstract framework applicable to a variety of contexts.

We provide concrete examples for geological and geographic
datasets in order to validate our technique and demonstrate how mul-
tivariate visualizations on surfaces can be designed (Sec. 5). It is im-
portant to mention that our work was envisioned by researchers such
as Crawfis and Allison [9], Laidlaw et al. [22], Kirby et al. [18], and
Taylor [50] many years ago. Our goal is to bring back the concept
introduced by them, showing that it can be used to create illustrative
multivariate visualizations on surfaces.

2 RELATED WORK

We believe that visualizations applied to planes also provide useful
guidelines to design layers for surfaces. Therefore, we present three
main topics related to our work: glyph-based visualization, layering
techniques, and decals on surfaces.

2.1 Glyph-Based Visualization on Surfaces

Design and Guidelines: Glyphs are widely used in visualization to
represent multivariate data [1, 58]. Ropinski et al. [40] propose a tax-
onomy that classifies glyph-based techniques applied to spatial medi-
cal data. They distinguish between pre-attentive (visual elements that
catch our attention quickly) and attentive (elements that need focused
attention due to existent distractors) glyph properties. Following a
broader approach, Borgo et al. [1] survey the state of the art of glyph-
based visualization techniques. Their work takes a holistic overview
of these visualizations in terms of concepts and theory, design guide-
lines, algorithms and techniques, and applications. They also discuss
the historical use of glyphs as visual signs for communication.

Since 2D glyphs can be used as decals (on surfaces), we argue that
the guidelines introduced by Ropinski et al. [40] and Borgo et al. [1]
are very relevant to the problem of designing decal-maps for surfaces.

Two Dimensional Glyphs on Surfaces: Some works explore
image-space approaches to visualizing glyphs that encode scientific
data. Peng and Laramee present an image-space glyph placement tech-
nique to visualize boundary flow [34]. Their technique projects a vec-
tor field to the R,G,B, and alpha color channels in image-space. Using
arrow glyphs, they visualize direction and magnitude (arrow color)
of a vector field defined on complex adaptive meshes from computa-
tional fluid dynamics (CFD). Later, Peng et al. used this image-space
approach to develop a robust and automatic clustering algorithm that
combines the properties of the underlying vector field and mesh into
a unified error-driven representation [33]. For tensor data, Chen et
al. propose an image-space technique to visualize asymmetric tensor
fields using evenly-spaced hyperstreamlines and elliptical glyphs [31].
While these image-space techniques are definitely useful, they can
lead to flickering, popping and other perceptual artifacts during inter-
action such as the so-called ‘shower-door effect’; the animated model
appears as if it is seen through a textured glass door [26]. These prob-
lems are avoided by rendering the glyphs only when the user stops
interacting with the model. In our case, these perceptual issues do not
occur since we apply decals to surfaces in object space.

In object-space, the problem of using 2D glyphs to encode data
on surfaces is relatively less explored. Sanyal et al. use glyphs, rib-
bons and spaghetti plots to visualize ensemble uncertainty in weather
data [41]. Pelt et al. design and place four 2D glyphs (disk, flower,
web and time variation strips) on a surface extracted from aneurysm
data to explore wall shear stress [56]. The design of these glyphs is
inspired by information visualization. Using these glyphs, they imple-
ment a details-on-demand approach that places glyphs on the surface
of the aneurysm model depending on the level of zoom during data
exploration. In cardiac visualization, Termeer displays a 2D glyph on
the surface of the epicardium to represent perfusion data [51].

For the placement of 2D glyphs in object-space, a common tech-
nique (such as the one used by Pelt et al. [56]) is to create an oriented
quad on the surface and generate texture coordinates to map or design
a desired glyph representation. However, this approach has its limita-
tions. The quads can be clipped by the surface depending on factors
such as the size and number of glyphs, and the curvature of the surface.
An attempt to avoid the clipping process is to offset the glyphs from
the surface, which can lead to the glyphs flying in space (Sec 4.6). In

contrast, our approach avoids these problems by mapping decals so
that they follow the curvature of the surface.

2.2 Layering Techniques on Planes and Surfaces
Layering refers to a multi-pass rendering technique where each data
field is mapped to a visual representation [4]. Following an artistic
analogy, this technique is similar to the way artists paint, for example,
background as first layer, large objects as second layer and details as
third layer. Using proper visual encoding and concepts of painting,
Kirby et al. [19] were able to display 6–9 data values from a 2D flow
dataset. In biological science, Laidlaw et al. apply layering techniques
to visualize diffusion tensor images of the mouse spinal cord [22]. This
technique also follows a painting metaphor and layers up to four at-
tributes on a 2D slice of the volume data. More recently, Schroeder et
al. present a sketch-based interface to create multivariate visualiza-
tions based on concepts of art and brushing [46]. In short, these works
emphasize that art can give good insight into creating visualizations of
multiple attributes. In addition, it can also increase the aesthetics of
the visualization [15, 21, 49, 53].

Crawfis and Alisson present a novel approach to visualize multiple
attributes on surfaces using texture mapping and color [9]. Later, Tay-
lor examines several approaches for the representation of multiple at-
tributes using visual variables such as color, texture, and density [50].
Another example of layering can be found in cardiac visualization.
Termeer creates a multivariate visualization on the epicardium surface
encoding three quantities: functional data (wall thickening) using a
color coding, perfusion data using 2D glyphs of varying sizes, and
scar displayed using a striped pattern overlay [51].

Many layering techniques have been applied to flow visualiza-
tion [3, 23, 25]. These techniques either combine multiple 2D vector
fields based on texture and color [54, 55], or display 3D vector fields
on layered surfaces [6]. They explore techniques such as LIC [5] to
represent the direction of a vector field overlaid with another attribute
represented by a colormap. Khlebnikov et al. introduce a procedural
texture synthesis technique based on random-phase Gabor noise [17].
They can layer three attributes where the first is modulated by the tex-
ture frequency of the gabor noise, the second by the texture orientation
and the third is color coded.

Many of the designs and techniques applied on surfaces can be im-
plemented or combined with decals. Our goal is not to replace any of
these techniques but to complement them by providing a new way of
designing multivariate visualizations.

2.3 Decals on Surfaces
In computer graphics, decals are scene elements, mostly represented
as small tiles, which are individually placed on a surface via a local
parametrization of the surface [10, 45]. They are routinely used by
artists to incorporate details in 3D scenes and characters. Perdersen
was one of the pioneer researchers to create a decalling interface for
this purpose [32]. However, Perdersen’s system had several practi-
cal limitations such as the requirement of a global parametrization of
the 3D object [32]. Later, other works have proposed techniques to
apply decals locally on surfaces. Lefebvre et al. apply decals using
a technique based on hardware-accelerated octree textures and planar
projection [24]. This technique can apply decals on arbitrary surfaces.
However, Schmidt et al. argue that this introduces significant distor-
tions on curved surfaces (due to planar projection) and does not easily
support complex editing operations [45]. Schmidt et al. propose a de-
calling interface based on the exponential maps [11, 45]. Exponential
maps [45] provide a robust technique to place decals on surfaces since
they compute a local parametrization based on the geodesic distance.
More recently, Schäfer et al. present a technique that demonstrates
an efficient employment of decals by modifying and subdividing 3D
surfaces using an efficient GPU memory management scheme [42].
However, these techniques depend on the surface representation and
are not feasible when a very large number of decals needs to be posi-
tioned and displayed interactively [10].

Deferred decals [20] is another technique that has become popular
in games due to its efficiency and simplicity. It consists of convert-
ing the scene’s world-space position stored in the geometry buffer (G-

buffer) to ‘decal space’ [20] which is defined by the decal bounding
box. Texture coordinates are obtained by simply projecting the decal
orthogonally onto the surface. This technique works well for planar
and low curvature surfaces. However, for other cases such as thin sur-
faces (e.g. thin tube), areas of high curvature and at sharp edges, it
may introduce stretching or smearing artifacts due to the orthogonal
projection [20, 45]. Moreover, the decals do not properly wrap around
the surface. Stretching and smearing are alleviated by clipping or fad-
ing out the decals, a solution that is not suitable for multivariate data
visualization. Surface wrapping is improved by changing the texture
coordinates based on the surface normals. Volume decals attempt to
address some of these problems by using a volumetric decal that is
sampled by the surface [35]. However, this approach has a higher
memory consumption and is only suitable for 2D images that can be
easily extended to 3D.

Following a different approach, de Groot et al. propose a local
parametrization known as implicit decals [10]. This technique is based
on the assumption that for small decals, fine distortion control is not
required. The local texture parametrization is given by an isotropic
spherical field function centered locally at a surface position. Using
polar coordinates, the authors calculate an angular coordinate and a ra-
dial coordinate based on the Euclidean distance. Their implicit method
uses an octree representation to avoid the inclusion of all decals in
the calculation of the final texture coordinates [10]. Their results il-
lustrate that the Euclidean distance is sufficient in approximating the
surface locally, thus avoiding the far more expensive computation of
the geodesic distance [10]. However, Euclidean distance may not be
enough in areas of high curvature, introducing undesired distortions.

Our technique is inspired by both deferred decals [20] and implicit
decals [10] but has some important differences. Comparing with de-
ferred decals, instead of a box whose orientation depends on the under-
lying mesh, we place an orientation independent sphere on the surface
centered at the location where the decal is to be placed. However, the
sphere itself does not provide the area on the surface where the decal
should be placed; this is given by the part of the surface that lies in-
side the sphere (sphere masking (Sec. 3.1)). We efficiently compute
this area and texture coordinates using the G-buffer in a multi-pass
approach (Sec. 4). The main advantage of our approach over deferred
decals is that it does not compute texture coordinates via an orthogonal
projection but instead, it computes them using sphere masking which
can easily accommodate various approximations to the geodesic dis-
tance. This also differentiates our method from implicit decals which
only considers the Euclidean distance [10]. Furthermore, when com-
pared with implicit decals, our technique does not require auxiliary
data structures such as octrees or 3D textures and computes texture
coordinates only for visible decals. It is intentionally designed to lever-
age the GPU pipeline for the purpose of creating layered visualizations
of multivariate data. Inspired by this, we denote our technique as lay-
ered decals. To the best of our knowledge, we are unaware of any
other works that use decals for data visualization on surfaces.

3 DECAL PARAMETRIZATION

In this section, we describe the parametrization that allows us to place
decals on surfaces. In order to use decal-maps to visualize multiple
surface attributes, we design our technique focusing on the layering
process. We remark that this parametrization does not rely on expen-
sive computations for rendering or for texture mapping the decals.

3.1 Sphere Masking and Local Parametrization
We begin with a surface on which we want to place decals. Let us
denote this surface as M. The first problem we need to tackle is the
one of building a parametrization of this surface that would allow the
placement of decals, one at a time in an efficient manner. Since decals
are small, such a parametrization need not be global. Therefore, for
each decal, we build a local parametrization on M that is defined only
inside a Euclidean ball containing the decal.

Let us assume that the intersection of the surface M and a ball Bc,
centered at the point c in M, is a disc Dc := Bc ∩M. The disc Dc may
be understood as a patch of M over which a decal is to be placed. We
refer the reader to Fig. 2 to illustrate the discussion that follows.

824 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 1, JANUARY 2017

Fig. 2. Sphere masking approach: (a) Patch Dc = Bc ∩ M, shown in
green. (b) Polar coordinate system on patch Dc. Angular coordinate
θc(p): angle between the projection of p on the tangent plane TcM and
a reference vector. Radial coordinate rc(p): approximates the geodesic
distance from c to p.

Let us consider the tangent plane of surface M at point c, which
we denote as TcM. On such a tangent plane, we can define a Carte-
sian coordinate system given by a previously chosen orthogonal basis
{ûc, v̂c}, for which any point xûc + yv̂c in TcM can be mapped to a
pixel {x,y} in the texture. The orthogonal basis {ûc, v̂c} can be either
a fixed a priori choice (e.g. randomly chosen) or computed from the
data as explained in Sec. 3.4.

The problem of texture mapping then becomes the problem of
matching points p in the patch Dc ⊂ M to pixels in the decal. Since
we are assuming that the patch Dc = Bc ∩M is a disc, we can choose
a radial coordinate system in Dc. Any point p in the patch Dc has
the coordinates p = (rc(p),θc(p)). Point p is then mapped to the
pixel (x(p),y(p)) in TcM for which rc(p) =

√
(x(p)2 + y(p)2), and

θc(p) = arctan(x(p),y(p)). Since Dc is a disc, these equations al-
ways have a solution {x(p),y(p)}.

The angle θc(p) can be obtained by simply projecting p onto TcM
and computing the angle of this projection with a preselected vector
in TcM, e.g. ûc. The radius rc(p), however, is given by the geodesic
distance between c and p in M, which may be expensive to compute in
the general case. Because decals are supposed to be small compared
to the surface M, we can use approximations of the geodesic distance
to estimate rc(p). We discuss three such approximations in the next
section. In Sec. 4, we show how to use the graphics pipeline to perform
these computations efficiently.

3.2 Estimating the Radial Coordinate

Any good approach to estimating the radial coordinate would have to
consider the problem of minimizing texture stretching, given an al-
lowed bound for its computational cost. However, since decals are
small in comparison with the original surface, fine distortion control
may not be required as discussed in de Groot et al. [10].

It must be stressed that estimating the radial coordinate efficiently
and accurately is a problem well outside the scope of the present work.
We here present estimates that are either straightforward (Euclidean
distance) or already available in the literature. We provide in Sec. 3.3 a
simple, yet objective, approach to compare such estimates. We remark
that our decal-mapping implementation is independent of how one es-
timates the radial coordinate, thus allowing our algorithm to remain
useful as the significant topic of approximating the geodesic distance
on surfaces evolves.

Euclidean Distance: A simple way to estimate the radial coordi-
nate rc(p), for a point p in the patch Dc, is to approximate it by the
Euclidean distance rc(p) ≈ ‖p−c‖. This approximation can provide
good results, as seen in the work of de Groot et al. [10], yet it suffers
from texture stretching in the general case. At its core, the Euclidean
distance uses solely the position of point p to estimate the radial coor-
dinate rc(p). Additional information from M must be used to mitigate
texture stretching.

Cosine Interpolation: Bowers et al. [2] introduce cosine interpo-
lation as a means to efficiently approximate the geodesic distance on
a surface, which they use to discard samples during the execution of
their Poisson sampling technique. We have used this distance to re-
duce texture stretching caused by the Euclidean distance.

Cosine interpolation uses the surface normals at c and p, n̂(c) and

n̂(p) respectively, to approximate the geodesic distance. Writing the
cosine of the angle between n̂(c) and the unit vector pointing from c to
p as qc = n̂(c)·(p− c)/‖p− c‖, as well as writing the cosine of the
angle between n̂(p) and the aforementioned unit vector as qp = n̂(p)·
(p−c)/‖p−c‖, one can linearly interpolate between these two values
by writing q(t) = (1− t)qc + tqp. The approximation is given by:

rc(p)≈
∫ 1

0

‖p− c‖√
1−q(t)2

dt =
arcsin(qc)− arcsin(qp)

qc −qp
‖p− c‖, (1)

and ‖p− c‖/
√

1−q2
c , for qc = qp. This formula has two remarkable

features [2]: 1) when c and p are coplanar, it becomes the Euclidean
distance; and 2) when c and p lie on a sphere with radius R, it yields
the exact geodesic distance 2Rarcsin(‖p− c‖/2R).

The Isophotic Distance: Pottman et al. [36] envisioned a distance
that is based on the Gaussian map of a surface M, i.e., the map that
associates to any point p in M its normal n̂(p). Given two points p1
and p2 in M, the pure isophotic distance between p1 and p2 is the angle
between n̂(p1) and n̂(p2). As Pottman et al. observe, this distance
is not a metric. They then proceed to build a metric from the pure
isophotic distance by combining it with the Euclidean metric, which
finally yields the isophotic metric.

Inspired by Pottman et al., Geng et al. propose a weighted distance
field to locally approximate the geodesic distance during their Poisson
sampling computation [14], which they still denote as an isophotic
distance and write as:

rc(p)≈ ‖p− c‖
(

1+(1− n̂(p) · n̂(c))b
)
, (2)

where the parameter b is used to adjust the influence of the normals on
the distance. In our tests, the range 4 ≤ b ≤ 6 yielded the best results.

3.3 Estimating the Approximations’ Error
In order to compare the quality of approximations for the radial coor-
dinate, we use the fact that any smooth surface can be locally approx-
imated by an osculating paraboloid (Fig. 3(a)), see do Carmo [11].
Thus, we can reduce the problem of comparing decals over small
patches of M to decals over paraboloids that approximate M well
enough in such patches. Moreover, in paraboloids, the radial coor-
dinate can be computed exactly. Therefore, we can provide objective
evidence to validate the usefulness of the estimates we previously de-
scribed for decal mapping, at least in the case of small decals. We can
also use paraboloids as a synthetic benchmark for mapping large de-
cals, because, no matter how big the decal may be, we will always be
able to compute the radial coordinate exactly. Details are provided in
the next subsection.

A comprehensive discussion on the effect of the approximations’
distortion on decals up to the scale of the surface is well outside the
scope of this work. However, this framework to evaluate the approx-
imations’ error is useful because: 1) it is based on a set of surfaces
that are simple, yet not trivial as the plane or the sphere; 2) it is easy
to implement; and 3) it is general, in light of the fact that surfaces can
always be locally approximated by osculating paraboloids.

Computing the Exact Radial Coordinate on Paraboloids: Here
we fix c = (0,0,0), and the normal n̂(c) = (0,0,1). The curvatures of
the paraboloid at c are given as k1,k2. For simplicity, we fix the prin-
cipal directions of curvature as t̂1 = (1,0,0) and t̂2 = (0,1,0). Thus,
for any point p = (p1, p2, p3) in this paraboloid, the radial coordinate
is simply the length of the parametric curve:

γ(t) =
(

p1t, p2t, 1
2 (k1(p1t)2 + k2(p2t)2)

)
, (3)

which connects the center c to the point p. The radial coordinate for
point p is given as rc(p) =

∫ 1
0 ‖γ ′(t)‖dt, which yields the formula:

rc(p) = 1
2

(√
A+B+

(
A/

√
B
)

arcsinh
(√

B/A
))

, (4)

in which A = p2
1 + p2

2 and B = (k1 p2
1 + k2 p2

2)
2.

Comparison: In our average case, neither the curvatures have sig-
nificant sizes, nor are they several orders of magnitude distinct. Quan-
titatively, we allowed the principal curvatures to vary in the [−63,64]
range in our tests. In these conditions, all distances we used yielded

Fig. 3. (a) (top) Elliptic paraboloid and (bottom) hyperbolic paraboloid;
the paraboloid adapts to the curvature of the surface. (b) Checkerboard
texture mapped to a hyperbolic paraboloid. (c) Top view of (b).

Fig. 4. Checkerboard decal mapped into a hyperbolic paraboloid
(k1 = −8, k2 = 16). Colors: blue represents zero error, red repre-
sents maximum error for the Euclidean distance. (a) Euclidean dis-
tance, max‖error‖ = 0.06; (b) cosine distance, max‖error‖ = 0.7; and
(c) isophotic distance, max‖error‖= 0.06.

good qualitative results when compared to the geodesic distance of the
paraboloids (4). Figure 3(c) displays the top view of texture mapping
a checkerboard to a hyperbolic paraboloid (k1 =−8 and k2 = 16). No-
tice the necessity of using the geodesic distance of the paraboloid as
a base case to compare the other distances, since (even for these mild
curvatures) texture stretching is significant. The colormap in Fig. 3(b)
and 3(c) depicts geodesic distance.

Quantitatively, both the Euclidean and the isophotic distances be-
haved similarly with errors no greater than 10−1, but usually an or-
der of magnitude smaller. The cosine approximation deviated the
most from the geodesic distance on paraboloids with high curvatures,
yet, remarkably, its results were still qualitatively similar to the Eu-
clidean and the isophotic distances. By inspecting the error function,
instead of its maximum, one can observe that the cosine distance’s
error spreads out uniformly as points get away from the center, which
contributes to its good qualitative behavior. For paraboloids with small
curvatures, the cosine distance yielded the best results. Fig. 4 illus-
trates the same checkerboard mapped into the paraboloid, now with
the error compared to the geodesic distance. The qualitative differ-
ences of those mappings to the geodesic map (Fig. 3(c)) are subtle.

3.4 Allowing the Angular Coordinate to Vary with Data

When the data includes a vector field, we may use the normalized
value of this vector field at the center c as a basis vector for TcM, e.g
we may choose this vector in place of ûc (see Sec. 3.1). If V̂ denotes
the normalized vector field, we have ûc = V̂ (c). This choice orients
the decal in the direction of the vector field.

We can further improve the sense of flow by incorporating informa-
tion about the local variation of the vector field around c. To accom-
plish this, given a point p in the patch Dc, we compute the angle coor-
dinate θc(p) in a slightly different manner from what we described in
Sec. 3.1. We first compute the angle between ûc and the projection of
p onto TcM, which we denote as θ 0

c (p). This angle is exactly what we
used as the angular coordinate for p in Sec. 3.1. We then compute the
angle between ûc and the projection onto TcM of the the vector V̂ (p);
we denote this angle as θ V̂

c (p). The angle coordinate of p is finally
given as:

θc(p) = θ V̂
c (p) − θ 0

c (p). (5)

Fig. 1 (b) and (d) shows the decals deformed by the vector field. These
images were rendered using the isophotic and Euclidean distances re-
spectively. The decals follow the vector field direction improving the
sense of flow.

4 LAYERED DECALS

We now present our framework to map and visualize decals on sur-
faces. Our algorithm is independent of the surface representation and
allows a high number of decals to be rendered at interactive frame
rates. Fig. 5 provides an overview of our implementation. We explore
the graphics pipeline using OpenGL and GLSL. Our implementation
to create a surface layer consists of a multi-pass approach which is
divided into three main steps: 1) compute the geometry buffer (G-
buffer); 2) compute the sphere masking buffer (SM-buffer); and 3)
apply the decals on the surface (decal mapping). In the next three
sections, we detail each one of these steps.

4.1 Surface G-buffer
In the first pass (Fig. 5, 1st pass), we send the surface geometry and
attributes to the GPU, and render it to a framebuffer object (FBO) with
three attachments (G-buffer). In the fragment shader, we output the
surface vertices, depth, normals and colors to this framebuffer. After
the depth test, the G-buffer contains the attributes of the visible faces
of the model stored in pixel space (RGBA).

4.2 Sphere Masking Computation
In the second pass, we compute the intersections between the spheres
and the surface and store them in a buffer that we call the SM-buffer.
Computing these intersections analytically is impractical but we can
use the GPU to do this efficiently. Before computing the intersections,
we need to distribute samples over the surface at the locations where
we want to place the decals. This distribution depends on factors such
as data resolution, attribute variation, or even user interest. Therefore,
depending on the application, this distribution can be given by a uni-
form or data driven sampling strategy [40]. In our work, we consider
uniform and Poisson sampling [8].

The generated samples are sent to the GPU along with a coarse
sphere mesh. We employ instanced rendering [48] to efficiently render
a sphere at each sample location. With face culling turned off, we test
the depth of the sphere fragments against the depth of the surface frag-
ments (from the G-buffer). If a sphere fragment is above the surface,
we discard it (surface clipping). For the remaining fragments of the
sphere, we create a mask by checking if they belong to the front-faces
or back-faces (Fig. 5, 2nd pass). After the depth test is performed,
the final image contains the visible front and back faces of the clipped
sphere rendered to a framebuffer. The visible back-face fragments cor-
respond to the intersection between the sphere and the surface (sphere
masking). This approach is fast and allows us to compute a high num-
ber of intersections in parallel, limited only by the number of spheres
that can be rendered using instanced rendering.

4.3 Decal Mapping
In the third pass, we render the decals on the surface. To do so, we
draw a screen quad and input the G-buffer and the SM-buffer in the
fragment shader to compute the local parametrization. We only con-
sider the fragments that are marked in the SM-buffer as back faces
(Fig. 5, 3rd pass). For each of these fragments, we access the sphere
ID stored in the pixel channel during the previous pass. With this
ID, we access the center, normal and other attributes stored as texture
buffer objects (TBO) [48]. Hence, using these sphere attributes as
well as the mesh attributes from the G-Buffer, we build the local coor-
dinate system at the center of the sphere and compute the parameters
rc(p) and θc(p) following the approach introduced in Sec. 3. Finally,
using the surface data attributes, we access the decal-map and map
the corresponding decal to the surface. It should be stressed that, un-
like implicit decals [10], we compute the local parametrization in a
deferred fashion only for visible decals.

4.4 Sphere Overlapping and Layered Rendering
The overlapping between visual elements can be useful for visual-
ization. For example, a slight overlap between decals can convey a
sense of connectivity [59] (e.g overlapped arrow glyphs can increase
the sense of continuity; or overlapping circles the sense of proximity).
In a multiscale visualization, we may want to increase the decal sizes
to generate a clustered visualization in order to emphasize parts of the

ROCHA ET AL.: DECAL-MAPS: REAL-TIME LAYERING OF DECALS ON SURFACES FOR MULTIVARIATE VISUALIZATION 825

Fig. 2. Sphere masking approach: (a) Patch Dc = Bc ∩ M, shown in
green. (b) Polar coordinate system on patch Dc. Angular coordinate
θc(p): angle between the projection of p on the tangent plane TcM and
a reference vector. Radial coordinate rc(p): approximates the geodesic
distance from c to p.

Let us consider the tangent plane of surface M at point c, which
we denote as TcM. On such a tangent plane, we can define a Carte-
sian coordinate system given by a previously chosen orthogonal basis
{ûc, v̂c}, for which any point xûc + yv̂c in TcM can be mapped to a
pixel {x,y} in the texture. The orthogonal basis {ûc, v̂c} can be either
a fixed a priori choice (e.g. randomly chosen) or computed from the
data as explained in Sec. 3.4.

The problem of texture mapping then becomes the problem of
matching points p in the patch Dc ⊂ M to pixels in the decal. Since
we are assuming that the patch Dc = Bc ∩M is a disc, we can choose
a radial coordinate system in Dc. Any point p in the patch Dc has
the coordinates p = (rc(p),θc(p)). Point p is then mapped to the
pixel (x(p),y(p)) in TcM for which rc(p) =

√
(x(p)2 + y(p)2), and

θc(p) = arctan(x(p),y(p)). Since Dc is a disc, these equations al-
ways have a solution {x(p),y(p)}.

The angle θc(p) can be obtained by simply projecting p onto TcM
and computing the angle of this projection with a preselected vector
in TcM, e.g. ûc. The radius rc(p), however, is given by the geodesic
distance between c and p in M, which may be expensive to compute in
the general case. Because decals are supposed to be small compared
to the surface M, we can use approximations of the geodesic distance
to estimate rc(p). We discuss three such approximations in the next
section. In Sec. 4, we show how to use the graphics pipeline to perform
these computations efficiently.

3.2 Estimating the Radial Coordinate

Any good approach to estimating the radial coordinate would have to
consider the problem of minimizing texture stretching, given an al-
lowed bound for its computational cost. However, since decals are
small in comparison with the original surface, fine distortion control
may not be required as discussed in de Groot et al. [10].

It must be stressed that estimating the radial coordinate efficiently
and accurately is a problem well outside the scope of the present work.
We here present estimates that are either straightforward (Euclidean
distance) or already available in the literature. We provide in Sec. 3.3 a
simple, yet objective, approach to compare such estimates. We remark
that our decal-mapping implementation is independent of how one es-
timates the radial coordinate, thus allowing our algorithm to remain
useful as the significant topic of approximating the geodesic distance
on surfaces evolves.

Euclidean Distance: A simple way to estimate the radial coordi-
nate rc(p), for a point p in the patch Dc, is to approximate it by the
Euclidean distance rc(p) ≈ ‖p−c‖. This approximation can provide
good results, as seen in the work of de Groot et al. [10], yet it suffers
from texture stretching in the general case. At its core, the Euclidean
distance uses solely the position of point p to estimate the radial coor-
dinate rc(p). Additional information from M must be used to mitigate
texture stretching.

Cosine Interpolation: Bowers et al. [2] introduce cosine interpo-
lation as a means to efficiently approximate the geodesic distance on
a surface, which they use to discard samples during the execution of
their Poisson sampling technique. We have used this distance to re-
duce texture stretching caused by the Euclidean distance.

Cosine interpolation uses the surface normals at c and p, n̂(c) and

n̂(p) respectively, to approximate the geodesic distance. Writing the
cosine of the angle between n̂(c) and the unit vector pointing from c to
p as qc = n̂(c)·(p− c)/‖p− c‖, as well as writing the cosine of the
angle between n̂(p) and the aforementioned unit vector as qp = n̂(p)·
(p−c)/‖p−c‖, one can linearly interpolate between these two values
by writing q(t) = (1− t)qc + tqp. The approximation is given by:

rc(p)≈
∫ 1

0

‖p− c‖√
1−q(t)2

dt =
arcsin(qc)− arcsin(qp)

qc −qp
‖p− c‖, (1)

and ‖p− c‖/
√

1−q2
c , for qc = qp. This formula has two remarkable

features [2]: 1) when c and p are coplanar, it becomes the Euclidean
distance; and 2) when c and p lie on a sphere with radius R, it yields
the exact geodesic distance 2Rarcsin(‖p− c‖/2R).

The Isophotic Distance: Pottman et al. [36] envisioned a distance
that is based on the Gaussian map of a surface M, i.e., the map that
associates to any point p in M its normal n̂(p). Given two points p1
and p2 in M, the pure isophotic distance between p1 and p2 is the angle
between n̂(p1) and n̂(p2). As Pottman et al. observe, this distance
is not a metric. They then proceed to build a metric from the pure
isophotic distance by combining it with the Euclidean metric, which
finally yields the isophotic metric.

Inspired by Pottman et al., Geng et al. propose a weighted distance
field to locally approximate the geodesic distance during their Poisson
sampling computation [14], which they still denote as an isophotic
distance and write as:

rc(p)≈ ‖p− c‖
(

1+(1− n̂(p) · n̂(c))b
)
, (2)

where the parameter b is used to adjust the influence of the normals on
the distance. In our tests, the range 4 ≤ b ≤ 6 yielded the best results.

3.3 Estimating the Approximations’ Error
In order to compare the quality of approximations for the radial coor-
dinate, we use the fact that any smooth surface can be locally approx-
imated by an osculating paraboloid (Fig. 3(a)), see do Carmo [11].
Thus, we can reduce the problem of comparing decals over small
patches of M to decals over paraboloids that approximate M well
enough in such patches. Moreover, in paraboloids, the radial coor-
dinate can be computed exactly. Therefore, we can provide objective
evidence to validate the usefulness of the estimates we previously de-
scribed for decal mapping, at least in the case of small decals. We can
also use paraboloids as a synthetic benchmark for mapping large de-
cals, because, no matter how big the decal may be, we will always be
able to compute the radial coordinate exactly. Details are provided in
the next subsection.

A comprehensive discussion on the effect of the approximations’
distortion on decals up to the scale of the surface is well outside the
scope of this work. However, this framework to evaluate the approx-
imations’ error is useful because: 1) it is based on a set of surfaces
that are simple, yet not trivial as the plane or the sphere; 2) it is easy
to implement; and 3) it is general, in light of the fact that surfaces can
always be locally approximated by osculating paraboloids.

Computing the Exact Radial Coordinate on Paraboloids: Here
we fix c = (0,0,0), and the normal n̂(c) = (0,0,1). The curvatures of
the paraboloid at c are given as k1,k2. For simplicity, we fix the prin-
cipal directions of curvature as t̂1 = (1,0,0) and t̂2 = (0,1,0). Thus,
for any point p = (p1, p2, p3) in this paraboloid, the radial coordinate
is simply the length of the parametric curve:

γ(t) =
(

p1t, p2t, 1
2 (k1(p1t)2 + k2(p2t)2)

)
, (3)

which connects the center c to the point p. The radial coordinate for
point p is given as rc(p) =

∫ 1
0 ‖γ ′(t)‖dt, which yields the formula:

rc(p) = 1
2

(√
A+B+

(
A/

√
B
)

arcsinh
(√

B/A
))

, (4)

in which A = p2
1 + p2

2 and B = (k1 p2
1 + k2 p2

2)
2.

Comparison: In our average case, neither the curvatures have sig-
nificant sizes, nor are they several orders of magnitude distinct. Quan-
titatively, we allowed the principal curvatures to vary in the [−63,64]
range in our tests. In these conditions, all distances we used yielded

Fig. 3. (a) (top) Elliptic paraboloid and (bottom) hyperbolic paraboloid;
the paraboloid adapts to the curvature of the surface. (b) Checkerboard
texture mapped to a hyperbolic paraboloid. (c) Top view of (b).

Fig. 4. Checkerboard decal mapped into a hyperbolic paraboloid
(k1 = −8, k2 = 16). Colors: blue represents zero error, red repre-
sents maximum error for the Euclidean distance. (a) Euclidean dis-
tance, max‖error‖ = 0.06; (b) cosine distance, max‖error‖ = 0.7; and
(c) isophotic distance, max‖error‖= 0.06.

good qualitative results when compared to the geodesic distance of the
paraboloids (4). Figure 3(c) displays the top view of texture mapping
a checkerboard to a hyperbolic paraboloid (k1 =−8 and k2 = 16). No-
tice the necessity of using the geodesic distance of the paraboloid as
a base case to compare the other distances, since (even for these mild
curvatures) texture stretching is significant. The colormap in Fig. 3(b)
and 3(c) depicts geodesic distance.

Quantitatively, both the Euclidean and the isophotic distances be-
haved similarly with errors no greater than 10−1, but usually an or-
der of magnitude smaller. The cosine approximation deviated the
most from the geodesic distance on paraboloids with high curvatures,
yet, remarkably, its results were still qualitatively similar to the Eu-
clidean and the isophotic distances. By inspecting the error function,
instead of its maximum, one can observe that the cosine distance’s
error spreads out uniformly as points get away from the center, which
contributes to its good qualitative behavior. For paraboloids with small
curvatures, the cosine distance yielded the best results. Fig. 4 illus-
trates the same checkerboard mapped into the paraboloid, now with
the error compared to the geodesic distance. The qualitative differ-
ences of those mappings to the geodesic map (Fig. 3(c)) are subtle.

3.4 Allowing the Angular Coordinate to Vary with Data

When the data includes a vector field, we may use the normalized
value of this vector field at the center c as a basis vector for TcM, e.g
we may choose this vector in place of ûc (see Sec. 3.1). If V̂ denotes
the normalized vector field, we have ûc = V̂ (c). This choice orients
the decal in the direction of the vector field.

We can further improve the sense of flow by incorporating informa-
tion about the local variation of the vector field around c. To accom-
plish this, given a point p in the patch Dc, we compute the angle coor-
dinate θc(p) in a slightly different manner from what we described in
Sec. 3.1. We first compute the angle between ûc and the projection of
p onto TcM, which we denote as θ 0

c (p). This angle is exactly what we
used as the angular coordinate for p in Sec. 3.1. We then compute the
angle between ûc and the projection onto TcM of the the vector V̂ (p);
we denote this angle as θ V̂

c (p). The angle coordinate of p is finally
given as:

θc(p) = θ V̂
c (p) − θ 0

c (p). (5)

Fig. 1 (b) and (d) shows the decals deformed by the vector field. These
images were rendered using the isophotic and Euclidean distances re-
spectively. The decals follow the vector field direction improving the
sense of flow.

4 LAYERED DECALS

We now present our framework to map and visualize decals on sur-
faces. Our algorithm is independent of the surface representation and
allows a high number of decals to be rendered at interactive frame
rates. Fig. 5 provides an overview of our implementation. We explore
the graphics pipeline using OpenGL and GLSL. Our implementation
to create a surface layer consists of a multi-pass approach which is
divided into three main steps: 1) compute the geometry buffer (G-
buffer); 2) compute the sphere masking buffer (SM-buffer); and 3)
apply the decals on the surface (decal mapping). In the next three
sections, we detail each one of these steps.

4.1 Surface G-buffer
In the first pass (Fig. 5, 1st pass), we send the surface geometry and
attributes to the GPU, and render it to a framebuffer object (FBO) with
three attachments (G-buffer). In the fragment shader, we output the
surface vertices, depth, normals and colors to this framebuffer. After
the depth test, the G-buffer contains the attributes of the visible faces
of the model stored in pixel space (RGBA).

4.2 Sphere Masking Computation
In the second pass, we compute the intersections between the spheres
and the surface and store them in a buffer that we call the SM-buffer.
Computing these intersections analytically is impractical but we can
use the GPU to do this efficiently. Before computing the intersections,
we need to distribute samples over the surface at the locations where
we want to place the decals. This distribution depends on factors such
as data resolution, attribute variation, or even user interest. Therefore,
depending on the application, this distribution can be given by a uni-
form or data driven sampling strategy [40]. In our work, we consider
uniform and Poisson sampling [8].

The generated samples are sent to the GPU along with a coarse
sphere mesh. We employ instanced rendering [48] to efficiently render
a sphere at each sample location. With face culling turned off, we test
the depth of the sphere fragments against the depth of the surface frag-
ments (from the G-buffer). If a sphere fragment is above the surface,
we discard it (surface clipping). For the remaining fragments of the
sphere, we create a mask by checking if they belong to the front-faces
or back-faces (Fig. 5, 2nd pass). After the depth test is performed,
the final image contains the visible front and back faces of the clipped
sphere rendered to a framebuffer. The visible back-face fragments cor-
respond to the intersection between the sphere and the surface (sphere
masking). This approach is fast and allows us to compute a high num-
ber of intersections in parallel, limited only by the number of spheres
that can be rendered using instanced rendering.

4.3 Decal Mapping
In the third pass, we render the decals on the surface. To do so, we
draw a screen quad and input the G-buffer and the SM-buffer in the
fragment shader to compute the local parametrization. We only con-
sider the fragments that are marked in the SM-buffer as back faces
(Fig. 5, 3rd pass). For each of these fragments, we access the sphere
ID stored in the pixel channel during the previous pass. With this
ID, we access the center, normal and other attributes stored as texture
buffer objects (TBO) [48]. Hence, using these sphere attributes as
well as the mesh attributes from the G-Buffer, we build the local coor-
dinate system at the center of the sphere and compute the parameters
rc(p) and θc(p) following the approach introduced in Sec. 3. Finally,
using the surface data attributes, we access the decal-map and map
the corresponding decal to the surface. It should be stressed that, un-
like implicit decals [10], we compute the local parametrization in a
deferred fashion only for visible decals.

4.4 Sphere Overlapping and Layered Rendering
The overlapping between visual elements can be useful for visual-
ization. For example, a slight overlap between decals can convey a
sense of connectivity [59] (e.g overlapped arrow glyphs can increase
the sense of continuity; or overlapping circles the sense of proximity).
In a multiscale visualization, we may want to increase the decal sizes
to generate a clustered visualization in order to emphasize parts of the

826 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 1, JANUARY 2017

Fig. 5. Implementation overview: (1) The geometry buffer (G-Buffer) is computed; (2) A sphere distribution is generated over the surface. Sphere
fragments above the surface geometry are clipped and the remaining labeled as front and back faces. In image-space, the back faces occluded
by the front faces represent the intersection between the surface and the sphere creating the sphere masking buffer (SM-Buffer); (3) Using the
G-buffer and the SM-buffer, we compute the local parametrization and perform decal mapping.

Fig. 6. (a) In image-space, the visible front faces “cut” the visible back
faces representing the sphere intersections with the surface. (b) Decals
(red and blue) seen from different points of view. From one point of view,
the fragments of the front faces of S2 (dashed curve) are seen inside of
S1; from the second point of view, otherwise.

data during an overview; or reduce the decal sizes during a zoom-in in-
teraction to visualize their specific locations. In order to achieve this,
we need to adapt our GPU algorithm to handle sphere intersections.
The number of intersections depends on the radius of the sphere as
well as other factors such as data resolution and local feature size. In
our implementation, sphere radius is a user controlled parameter.

In our sphere masking approach, we use the back and front faces
of the spheres to obtain the intersection between the spheres and the
surface. However, when two or more spheres are intersecting each
other, this approach leads to some artifacts. Consider two intersecting
spheres S1 and S2 as shown in Fig. 6. Depending on the point of view,
the front faces of one sphere overlap the back faces of the other sphere
in screen space (Fig. 6a). We could discard the front face fragments
of S1 inside of S2 or vice-versa. However, we cannot discard the front
face fragments that are outside of the intersection since they are used
for sphere masking – the intersection with the surface is given by the
overlap between the front and back faces in screen space. Note that
in this situation, we have two conditions for the front face fragments
in the same shader. This is however a difficult problem to solve using
fragment-based operations only. Even if we were able to solve it, a
change of view point during the interaction would switch the order
between the spheres and consequently the decals (Fig. 6(b)).

To solve this problem, we need to consider the order between the
overlapping spheres. A solution is to render the sphere S1 to FBO1
and the sphere S2 to a FBO2 and compose the final image combining
both buffers. In order to implement this idea, we first detect the in-
tersections between the spheres for a chosen radius. This is done in
the CPU in a pre-processing stage. We formulate the problem as fol-
lows. Given a set S of overlapping spheres, find N non-overlapping
subsets Lk such that S =

⋃N
k=1Lk, and for any X and Y ∈ Lk, X does

not intersect Y . Each subset Lk thus represents a sub-layer of non-
overlapping spheres. We use a simple collision strategy (Algorithm 1)
to obtain the subsets Lk. If there are n spheres, this algorithm is O(n2)
in the worst-case since it has to conduct n(n−1)/2 collision tests. In
general, it can achieve O(n logn) using broad-phase algorithms [30].
However, in our collision scenario (e.g. centroid based comparison
and non-deformable objects) spatial hashing collision strategies [52]
can solve the case in O(n). See also a parallel implementation [2, 30].

After the non-overlapping subsets are determined, we label each

Algorithm 1 Splitting S into N non-overlapping sets
1: i = 0
2: while S is not empty do
3: i ← i+1, Li =∅
4: remove first sphere from S and add it to Li
5: for all remaining spheres S in S do
6: if S does not intersect any of the spheres in Li then
7: remove S from S and add it to Li
8: end if
9: end for

10: end while
11: N ← i

No. decals No. sub-layers FPS
50K 26 19

random uniform 100K 41 11
sampling 150K 58 7.5

200K 72 5.9

Table 1. Performance results for the Stanford bunny model using a
screen resolution of 1280x1024 (laptop Intel R©i7 with a GeForce GTX
960M 2G) and sphere radius of 0.003.

sphere with its corresponding subset ID. We send all the spheres with
their respective IDs to the GPU to be rendered to a target framebuffer.
However, in order to render all the spheres at once (instead of a multi-
pass approach), we use as a render target a layered framebuffer ob-
ject (LFBO) [48]. The LFBO is a set of framebuffers containing their
own depth and color attachments. The number of framebuffers is con-
trolled by the number of sub-layers N. Each sphere is assigned to its
corresponding sub-layer during the rendering. This avoids the sphere
overlapping problems described previously since each sub-layer per-
forms its own depth test operations and there are no intersections per
sub-layer. In order to map decals to each sub-layer, we send the LFBO
as a 2D texture array to the fragment shader in the third pass and iter-
ate over each sub-layer to apply decal mapping as outlined in Sec. 4.3.
The resulting fragments are composited to produce the final image.
Similar to volume rendering, if the accumulated opacity becomes one
during compositing, we do not need to iterate over the other sub-layers.

In order to handle multiple layers, we simply repeat this procedure,
rendering each of the layers and using conventional OpenGL blend
operations to compose the final image.

4.5 Performance

Our implementation is mainly impacted by two variables: the number
of decals and the number of sub-layers; the latter being more critical.
In order to test the performance of our approach in the context of mul-
tivariate visualization (i.e. practical cases using sampling strategies),
we generated a high number of decals uniformly distributed on the sur-
face of the bunny model using a Monte Carlo sampling strategy [8].
We chose a fixed sphere radius so that the number of sub-layers in-
creases progressively with the number of decals. Table 1 summarizes
the performance of our current implementation. We obtain interactive
frame rates even when displaying a high number of decals organized

Fig. 7. Steps of our implementation: (a) Sphere masking; (b) Angular coordinate; (c) Radial coordinate; (d) Decal mapping; (e) Decal overlapping.

Fig. 8. (a) Aneurysm data; (b) pressure decal-map; (c) quad-based 2D-
glyph visualization inspired by Pelt et al. [56]; (d) our approach.

in several layers. Thus, in case of a Poisson sampling (low number of
sub-layers), we reckon our algorithm will perform considerably better,
resulting in real-time interactions.
4.6 Qualitative Comparison
We compare our technique with the standard quad-based approach to
place 2D glyphs on surfaces. Pelt et al. adopt this strategy to explore
wall shear stress (WSS) in aneurysm datasets [56]. Inspired by their
design, we place 2D glyphs on an isosurface extracted from a dataset
[57]. We implement their quad-based approach and compare it with
our decal-based approach. Like their approach, we distribute quads
uniformly (in our case using Poisson sampling [8]) where each quad
is oriented based on the surface normal at its center. We also generate
each quad in the geometry shader and clip the fragments that are not
part of the circular glyph in the fragment shader.

For simplicity, instead of the WSS, we visualize the pressure on the
aneurysm wall. We use a decal-map composed of five circular glyphs
(similar to Pelt et al.’s zoom level 1 [56] and Sanyal et al.’s circular
glyphs [41]) with an ordered circular pattern and different levels of
saturation to indicate the pressure magnitude (Fig. 8(b)). While the
quad-based approach works well for planes and surface areas of low
curvature, it can introduce severe artifacts otherwise. Fig. 8(c) illus-
trates artifacts such as clipping and flying glyphs which make interpre-
tation difficult. Our technique adapts well to areas of high curvature
of the aneurysm and does not suffer from artifacts caused by the depth
test and glyph orientation (Fig. 8(a) and 8(d)). Moreover, it works even
for the thin vessel of the aneurysm (Fig. 8 (d)), where techniques such
as deferred decals are susceptible to fail. Lastly, we can apply proper
lighting to our decals by accessing the normal map from the G-buffer.

In this section we have presented an abstract framework to place
decals on arbitrary surfaces as well as a generic approach to handle
overlapping decals. In summary, Fig. 7 illustrates each step of our
technique applied to a bumpy sphere.
5 RESULTS AND DISCUSSION

We explore the design space associated with layered illustrative mul-
tivariate visualizations using decal-maps and color-maps. We justify

Fig. 9. (a) Areas of high population density in India (sequential orange
colormap). (b) Areas of fire detection (red dots) in Africa.

geographic data visual mapping
population density sequential colormap (one hue)

earthquake location earthquake decal placement
earthquake magnitude earthquake decal-map

NP location NP decal placement
number of nuclear reactors color saturation

fire detection point placement
Table 2. Mapping geographic data attributes to visual representations.

our design choices based on previous designs, visual perception stud-
ies, traditional illustrations and discussions with domain experts (two
reservoir engineers and two geologists). We visualize multivariate data
from two domains: geographic data and geological data.

5.1 Multivariate Geographic Data Visualization

Geographic data consists of information associated with spatial posi-
tions on the Earth given in latitude/longitude coordinates. Some ex-
amples are socioeconomic data (e.g. population density), hazard data
(e.g. earthquakes) and physical data measurements (e.g. temperature).
These datasets are explored by geographic information systems (GIS)
experts to understand patterns and data relationships. GIS apply the
concept of layering to 2D maps, encoding multiple attributes using
glyphs, color-maps, lines, points and other visual elements supported
by scientific and information visualization research [27, 59].

An example of a multivariate geographic visualization is the NASA
SEDAC Hazards Mapper (NSHM) [47] which illustrates the data at-
tributes population density [29], earthquakes [29], nuclear plants (NP)
[29] and fire [28] distributed on the Earth map in a layered fashion.
Inspired by this visualization, we map these data attributes and their
respective representations to the spherical surface of the Earth. This is
a good fit since the cosine distance approximation (Sec. 3.2) is exact
for the sphere.

Visualization Design We use a design similar to NSHM [47], a
summary is shown in Table 2. We organize the attributes in four layers:
a base layer, earthquake layer, nuclear plant layer and fire layer. In the
following, we present a justification of our design choices.

Base layer: We use a sequential colormap to represent population
density. This choice is suitable since population density is quantitative
and ordinal data. This visualization emphasizes areas of high (e.g.
India in Fig. 9(a)) and low (e.g. Sahara desert in Fig. 9(b)) population
density (trends). Since this is a base layer which covers large areas,
we use light tones and secondary colors such as orange [58].

ROCHA ET AL.: DECAL-MAPS: REAL-TIME LAYERING OF DECALS ON SURFACES FOR MULTIVARIATE VISUALIZATION 827

Fig. 5. Implementation overview: (1) The geometry buffer (G-Buffer) is computed; (2) A sphere distribution is generated over the surface. Sphere
fragments above the surface geometry are clipped and the remaining labeled as front and back faces. In image-space, the back faces occluded
by the front faces represent the intersection between the surface and the sphere creating the sphere masking buffer (SM-Buffer); (3) Using the
G-buffer and the SM-buffer, we compute the local parametrization and perform decal mapping.

Fig. 6. (a) In image-space, the visible front faces “cut” the visible back
faces representing the sphere intersections with the surface. (b) Decals
(red and blue) seen from different points of view. From one point of view,
the fragments of the front faces of S2 (dashed curve) are seen inside of
S1; from the second point of view, otherwise.

data during an overview; or reduce the decal sizes during a zoom-in in-
teraction to visualize their specific locations. In order to achieve this,
we need to adapt our GPU algorithm to handle sphere intersections.
The number of intersections depends on the radius of the sphere as
well as other factors such as data resolution and local feature size. In
our implementation, sphere radius is a user controlled parameter.

In our sphere masking approach, we use the back and front faces
of the spheres to obtain the intersection between the spheres and the
surface. However, when two or more spheres are intersecting each
other, this approach leads to some artifacts. Consider two intersecting
spheres S1 and S2 as shown in Fig. 6. Depending on the point of view,
the front faces of one sphere overlap the back faces of the other sphere
in screen space (Fig. 6a). We could discard the front face fragments
of S1 inside of S2 or vice-versa. However, we cannot discard the front
face fragments that are outside of the intersection since they are used
for sphere masking – the intersection with the surface is given by the
overlap between the front and back faces in screen space. Note that
in this situation, we have two conditions for the front face fragments
in the same shader. This is however a difficult problem to solve using
fragment-based operations only. Even if we were able to solve it, a
change of view point during the interaction would switch the order
between the spheres and consequently the decals (Fig. 6(b)).

To solve this problem, we need to consider the order between the
overlapping spheres. A solution is to render the sphere S1 to FBO1
and the sphere S2 to a FBO2 and compose the final image combining
both buffers. In order to implement this idea, we first detect the in-
tersections between the spheres for a chosen radius. This is done in
the CPU in a pre-processing stage. We formulate the problem as fol-
lows. Given a set S of overlapping spheres, find N non-overlapping
subsets Lk such that S =

⋃N
k=1Lk, and for any X and Y ∈ Lk, X does

not intersect Y . Each subset Lk thus represents a sub-layer of non-
overlapping spheres. We use a simple collision strategy (Algorithm 1)
to obtain the subsets Lk. If there are n spheres, this algorithm is O(n2)
in the worst-case since it has to conduct n(n−1)/2 collision tests. In
general, it can achieve O(n logn) using broad-phase algorithms [30].
However, in our collision scenario (e.g. centroid based comparison
and non-deformable objects) spatial hashing collision strategies [52]
can solve the case in O(n). See also a parallel implementation [2, 30].

After the non-overlapping subsets are determined, we label each

Algorithm 1 Splitting S into N non-overlapping sets
1: i = 0
2: while S is not empty do
3: i ← i+1, Li =∅
4: remove first sphere from S and add it to Li
5: for all remaining spheres S in S do
6: if S does not intersect any of the spheres in Li then
7: remove S from S and add it to Li
8: end if
9: end for

10: end while
11: N ← i

No. decals No. sub-layers FPS
50K 26 19

random uniform 100K 41 11
sampling 150K 58 7.5

200K 72 5.9

Table 1. Performance results for the Stanford bunny model using a
screen resolution of 1280x1024 (laptop Intel R©i7 with a GeForce GTX
960M 2G) and sphere radius of 0.003.

sphere with its corresponding subset ID. We send all the spheres with
their respective IDs to the GPU to be rendered to a target framebuffer.
However, in order to render all the spheres at once (instead of a multi-
pass approach), we use as a render target a layered framebuffer ob-
ject (LFBO) [48]. The LFBO is a set of framebuffers containing their
own depth and color attachments. The number of framebuffers is con-
trolled by the number of sub-layers N. Each sphere is assigned to its
corresponding sub-layer during the rendering. This avoids the sphere
overlapping problems described previously since each sub-layer per-
forms its own depth test operations and there are no intersections per
sub-layer. In order to map decals to each sub-layer, we send the LFBO
as a 2D texture array to the fragment shader in the third pass and iter-
ate over each sub-layer to apply decal mapping as outlined in Sec. 4.3.
The resulting fragments are composited to produce the final image.
Similar to volume rendering, if the accumulated opacity becomes one
during compositing, we do not need to iterate over the other sub-layers.

In order to handle multiple layers, we simply repeat this procedure,
rendering each of the layers and using conventional OpenGL blend
operations to compose the final image.

4.5 Performance

Our implementation is mainly impacted by two variables: the number
of decals and the number of sub-layers; the latter being more critical.
In order to test the performance of our approach in the context of mul-
tivariate visualization (i.e. practical cases using sampling strategies),
we generated a high number of decals uniformly distributed on the sur-
face of the bunny model using a Monte Carlo sampling strategy [8].
We chose a fixed sphere radius so that the number of sub-layers in-
creases progressively with the number of decals. Table 1 summarizes
the performance of our current implementation. We obtain interactive
frame rates even when displaying a high number of decals organized

Fig. 7. Steps of our implementation: (a) Sphere masking; (b) Angular coordinate; (c) Radial coordinate; (d) Decal mapping; (e) Decal overlapping.

Fig. 8. (a) Aneurysm data; (b) pressure decal-map; (c) quad-based 2D-
glyph visualization inspired by Pelt et al. [56]; (d) our approach.

in several layers. Thus, in case of a Poisson sampling (low number of
sub-layers), we reckon our algorithm will perform considerably better,
resulting in real-time interactions.
4.6 Qualitative Comparison
We compare our technique with the standard quad-based approach to
place 2D glyphs on surfaces. Pelt et al. adopt this strategy to explore
wall shear stress (WSS) in aneurysm datasets [56]. Inspired by their
design, we place 2D glyphs on an isosurface extracted from a dataset
[57]. We implement their quad-based approach and compare it with
our decal-based approach. Like their approach, we distribute quads
uniformly (in our case using Poisson sampling [8]) where each quad
is oriented based on the surface normal at its center. We also generate
each quad in the geometry shader and clip the fragments that are not
part of the circular glyph in the fragment shader.

For simplicity, instead of the WSS, we visualize the pressure on the
aneurysm wall. We use a decal-map composed of five circular glyphs
(similar to Pelt et al.’s zoom level 1 [56] and Sanyal et al.’s circular
glyphs [41]) with an ordered circular pattern and different levels of
saturation to indicate the pressure magnitude (Fig. 8(b)). While the
quad-based approach works well for planes and surface areas of low
curvature, it can introduce severe artifacts otherwise. Fig. 8(c) illus-
trates artifacts such as clipping and flying glyphs which make interpre-
tation difficult. Our technique adapts well to areas of high curvature
of the aneurysm and does not suffer from artifacts caused by the depth
test and glyph orientation (Fig. 8(a) and 8(d)). Moreover, it works even
for the thin vessel of the aneurysm (Fig. 8 (d)), where techniques such
as deferred decals are susceptible to fail. Lastly, we can apply proper
lighting to our decals by accessing the normal map from the G-buffer.

In this section we have presented an abstract framework to place
decals on arbitrary surfaces as well as a generic approach to handle
overlapping decals. In summary, Fig. 7 illustrates each step of our
technique applied to a bumpy sphere.
5 RESULTS AND DISCUSSION

We explore the design space associated with layered illustrative mul-
tivariate visualizations using decal-maps and color-maps. We justify

Fig. 9. (a) Areas of high population density in India (sequential orange
colormap). (b) Areas of fire detection (red dots) in Africa.

geographic data visual mapping
population density sequential colormap (one hue)

earthquake location earthquake decal placement
earthquake magnitude earthquake decal-map

NP location NP decal placement
number of nuclear reactors color saturation

fire detection point placement
Table 2. Mapping geographic data attributes to visual representations.

our design choices based on previous designs, visual perception stud-
ies, traditional illustrations and discussions with domain experts (two
reservoir engineers and two geologists). We visualize multivariate data
from two domains: geographic data and geological data.

5.1 Multivariate Geographic Data Visualization

Geographic data consists of information associated with spatial posi-
tions on the Earth given in latitude/longitude coordinates. Some ex-
amples are socioeconomic data (e.g. population density), hazard data
(e.g. earthquakes) and physical data measurements (e.g. temperature).
These datasets are explored by geographic information systems (GIS)
experts to understand patterns and data relationships. GIS apply the
concept of layering to 2D maps, encoding multiple attributes using
glyphs, color-maps, lines, points and other visual elements supported
by scientific and information visualization research [27, 59].

An example of a multivariate geographic visualization is the NASA
SEDAC Hazards Mapper (NSHM) [47] which illustrates the data at-
tributes population density [29], earthquakes [29], nuclear plants (NP)
[29] and fire [28] distributed on the Earth map in a layered fashion.
Inspired by this visualization, we map these data attributes and their
respective representations to the spherical surface of the Earth. This is
a good fit since the cosine distance approximation (Sec. 3.2) is exact
for the sphere.

Visualization Design We use a design similar to NSHM [47], a
summary is shown in Table 2. We organize the attributes in four layers:
a base layer, earthquake layer, nuclear plant layer and fire layer. In the
following, we present a justification of our design choices.

Base layer: We use a sequential colormap to represent population
density. This choice is suitable since population density is quantitative
and ordinal data. This visualization emphasizes areas of high (e.g.
India in Fig. 9(a)) and low (e.g. Sahara desert in Fig. 9(b)) population
density (trends). Since this is a base layer which covers large areas,
we use light tones and secondary colors such as orange [58].

828 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 1, JANUARY 2017

Fig. 10. (a) and (b) Multivariate geo visualization combining nuclear
power plants (green decals), population density (sequential orange
colomap) and earthquakes displayed at two levels of zoom. Number of
reactors for each nuclear plant is visualized using saturation. (c) Earth-
quake decals of several magnitudes clustered in the Indonesia area; (d)
a closer view showing the locations more precisely.

Fig. 11. (a) Earthquake decal-map; (b) Nuclear plant decal-map.

Earthquake layer: The earthquake data consists of a distribution
of earthquakes and their magnitude on the Richter scale. The distri-
bution shows locations (visual variable position) where earthquakes
are recurrent. For magnitude, we use a decal composed of concentric
circles and four main colors [47]. We create a decal-map using these
four glyphs as illustrated in Fig. 11(a). In NSHM [47], the size of
the earthquake glyphs is larger during an overview, resulting in over-
lapping glyphs, and smaller in a close view to provide details about
the specific locations of the earthquakes (details-on-demand). Our de-
cal mapping technique is easily able to accommodate this. We first
choose a maximum radius for the spheres (decal size). Using this ra-
dius, we process the earthquake distribution to obtain the sub-layers
as described in Sec. 4.4 and control the decal size based on the level
of zoom. Fig. 10(c and d) illustrates two levels of zoom for the earth-
quake layer. Observe that this layer has several overlapping decals
since earthquakes are recurrent at specific locations. This generates a
high number of sub-layers (32 in our case using an earthquake data
with frequency ≥ 4 within a month). However, since there are few
decals, the overall performance is not impacted.

Nuclear plant layer: The NP data contains information about the
number of reactors at various locations where NPs are present. Similar
to earthquakes, the visual variable position is used to visualize NP
locations. In NSHM [47], a nuclear power plant is represented as a
green glyph containing a lightning bolt in the middle (Fig. 11(b)). We
use the same glyph as a decal. Additionally, we visualize the number
of reactors (ordinal/quantitative data) by changing the color saturation;
the range is quantized to five bins. Therefore, we obtain an overview
of areas with high and low number of reactors. Moreover, we visualize
the NP decals using the same details-on-demand approach applied to
the earthquake layer (Fig. 10).

Fire layer: We visualize fire detection data captured during a pe-
riod of 7 days in Jan. 2016. From this data, we observe that fire detec-
tion is common in forest areas such as the African Savanna (Fig. 9(b)).
Like NSHM [47], we visualize the fire detection distribution using red
dots. The point size is slightly increased depending on the zoom level.

5.2 Multivariate Geological Data Visualization

In the oil and gas domain, geological reservoir models are represented
as irregular or regular hexahedral grids embedding several geological
properties that describe the reservoir. The properties can be static or
dynamic [60]. Reservoir engineers explore these properties as param-

geological data visual mapping
rock type pastel colormap
porosity proximity between decals

oil flow direction red arrow decal
oil flow magnitude decal transparency and size

water flow direction blue arrow decal
water flow magnitude decal transparency and size

Table 3. Mapping geological data attributes to visual representations.

eters for better prediction of oil recovery. They aim to study the spa-
tial configurations of properties to check data correlations and identify
connected areas. The goal is to propose optimal reservoir development
strategies and to better predict dynamic reservoir performance.

However, despite the nature of this multivariate problem, most com-
mercial visualization systems (e.g. Eclipse R© [43] and Petrel R© [44])
in this domain only rely on color-based mono-visualizations of geo-
logical properties without considering aspects such as data type. This
limits visualizing multiple properties within the same reservoir con-
text. Moreover, based on our discussions with domain experts, this
visualization approach forces the viewer to frequently toggle between
different properties for supporting data exploration tasks.

Motivated by the need to visualize multiple attributes, we introduce
for the first time in this domain, a multifield illustrative visualization
of a reservoir simulation model combining six attributes: rock type,
porosity, oil flow direction and magnitude, and water flow direction
and magnitude. We visualize these attributes on the surface of the
hexahedral grid. Even though reservoir grids may have degenerate
cells (to embed geological features such as faults [60]), our technique
works well since it does not depend on the surface representation.

For our example, we use the Zmap simulation reservoir
model (Fig. 1(e)). Since this model is relatively flat, we use the Eu-
clidean approximation for the radial coordinate. The data consists of
a black oil simulation conducted by a domain expert. The main goal
of this simulation is to analyze the process of oil recovery. During the
simulation, water is injected at a location of the reservoir (using an
injection well) to push the oil to another location from where it is to
be extracted (using a production well) [60]. Oil migration depends on
other properties such as porosity, rock type and permeability, reinforc-
ing the need to provide an integrated multivariate visualization.

Visualization Design Table 3 shows a summary of our visual-
ization design. Many of the design ideas come from initial discussions
with domain experts, literature review as well as inspiration from geo-
logical illustrations. It is important to note that this is an initial design.
An in-depth domain problem characterization, task requirements re-
search and evaluation are required. However, we consider these to be
out of the scope of this paper.

Rock type layer: Within reservoir models, rock type is represented
as a set of indices. Thus, the visual variable suitable for rock type is
the one used to represent categorical data (no intrinsic ordering) [59].
Since each reservoir usually has just a few different rock types, we use
a pastel color scale to represent each rock type (Fig. 12). Pastel color
scales have been applied to categorize areas in 2D maps with minimum
visual interference between layered objects such as lines (e.g. lines
used to represent rivers) [59].

Porosity layer: Porosity is a volumetric quantity expressed as a
percentage that measures the capacity of rocks to store fluids [60].
Naturally, visual variables such as value and position can be used for
indicating high and low values of porosity. In our case, we adopt posi-
tion; highly clustered areas indicate low porosity and vice versa. Our
inspiration for this choice comes from traditional illustrations where
porosity is represented as a set of rock grains packed in a certain con-
figuration (Fig. 13(b)). In our design, we vary the distribution of decals
to convey porosity. For the porosity decal, we use the normal map of
a sphere combined with the color of the rock type. It gives the impres-
sion that the porosity ‘grains’ are inside the reservoir model (Fig. 12).
Moreover, it decreases the visual interference with other layers.

Oil flow layer: Oil flow is visualized using a red arrow decal-map
(Fig. 14(a)). This creates a high contrast with the rock type and poros-
ity background. Red is also a conventional choice for visualizing oil

Fig. 12. Layering on the surface of a reservoir model combininig rock type, porosity, and oil and water flow.

Fig. 13. (a) Porosity visual mapping; (b) geological illustration of poros-
ity.

Fig. 14. (a) Water and oil decal-maps; (b) decal placement.

(domain expert feedback). In our design, we orient the arrow decal to
follow the oil flow direction using the approach introduced in Sec. 3.4,
whereas the magnitude is used to control the size and transparency
of the decal. We use both size and transparency due to the fact that
the size of the decals is altered due to perspective projection. Design
guidelines recommend the use of orthogonal projection, if possible,
when using size as a visual variable [59]. Since we do not want to
compromise the 3D visualization, we decided to reinforce the oil flow
magnitude by using transparency as a secondary visual variable. Other
variables such as saturation or value can also be considered. We use
transparency because it also reduces visual clutter by emphasizing ar-
eas of the model where the magnitude of the oil flow is high; this can
be useful for analyzing the process of oil recovery.

Water flow layer: For water flow, we use a design similar to the
oil flow layer. We use a blue arrow (domain expert feedback) decal-
map to visualize water flow direction (Fig. 14(a)) as well as size and
transparency to encode water flow magnitude.

Decal placement: We need to consider decal placement strategies
for porosity, oil and water flow. For the porosity distribution, we map
the porosity values (generally between 0-0.3 (30%)) to proximity us-
ing an importance driven Poisson sampling technique [8]. We slightly
overlap the ‘grains’ to increase the sense of connectivity [59]. For the
placement of the oil and water flow decals, we use the quad faces of
the reservoir grid (Fig. 14(b)). We place a decal at the center of each
triangle of the quad face. This helps decrease decal overlapping be-
tween the layers. To increase the sense of flow and connectivity, we
slightly overlap the arrow decals with each other.

Observations: Fig. 12(c) illustrates our multivariate illustrative vi-
sualization combining rock type, porosity, oil, and water flow mea-
surements. Flow characteristics depend on porosity. The green areas
of the model are part of a channel with high porosity (Fig. 1(e)); this
gives rise to a higher flow rate. In blue areas, the porosity is lower
making oil and water flow less; light red areas are impenetrable.

When designing a layered visualization, we need to consider visual
cues that help us segment each layer independently so that we can un-
derstand each property clearly. A designer has to consider variables
such as color, contrast, depth cues, and the concept of integral and
separable dimensions [59]. In Fig. 12(a), the shading variation caused
by the normal map used to represent porosity gives rise to the corn-

sweet effect [59]: water flow arrows appear to be over the porosity
layer (Fig. 12(b)). Additionally, we applied a soft blurred shadow to
the flow decals (Fig. 14). This is similar to an unsharpen mask or halo
effect which helps separate objects from the background [59]. Our
layering design is further aided by the use of light colors, a normal
texture (shading) and primary solid colors (arrows).

Last but not least, our visualization represents the data in an illus-
trative fashion. It is intuitive to visualize porosity using grains, flow
using arrows and rock type via color. A quick glance of the visualiza-
tion can tell a lot about the phenomenon thus facilitating the interaction
between professionals from different backgrounds.

6 CONCLUSION AND FUTURE WORK

We introduced the use of decals and decal-maps as a new way of rep-
resenting multivariate data on surfaces. To map decals on surfaces,
we proposed a real-time technique that computes a local parametriza-
tion approximating the geodesic distance locally without relying on
expensive computations. In order to obtain a better local geodesic
approximation, we discussed and contrasted three distances. We pro-
vided an efficient and simple implementation of our technique, taking
advantage of the graphics pipeline. We demonstrated the applicability
and usefulness of our technique via case studies from two different do-
mains. Another example of the broad applicability of our technique is
shown in Fig. 1(b) where we precomputed the overlapping sub-layers
and rendered the decals in realtime to generate a texture pattern cover-
ing the entire surface of the bunny model such as lapped textures [37].

We also introduced a way of deforming decals locally based on the
angular coordinate of our local parametrization. This can be useful
in applications such as flow visualization. An example is shown in
Fig. 1(a). This figure illustrates a synthetic vector field generated over
the surface of the bunny model. We deformed brush stroke decals
based on the underlying vector field and distributed decals densely
over the surface to achieve an effect similar to LIC.

Exploring the design space is critical in multivariate visualiza-
tions [46] and we hope that our work will facilitate this exploration.
The following are some of the lines of investigation that our work
paves the way for. (1) A further detailed investigation of the radial
coordinate in order to find better local surface approximations of the
geodesic distance. (2) A detailed investigation of deformation based
on the angular coordinate. (3) The study of heuristics and methods to
obtain an automatic initial radius size from the surface. (4) Investiga-
tion of approaches for creating multiscale multivariate visualizations
using decal-maps on surfaces. (5) The use of interaction techniques
such as lenses to explore layering. (6) Investigation of techniques to
interact with decals such as click and zoom to provide additional in-
formation about the data. (7) Application of decal-mapping to other
contexts such as non-photorealistic rendering and texture coverage.

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for their constructive com-
ments, Hamidreza Hamdi for providing the reservoir data, and Andrew
Owens and Sowmya Somanath for their valuable feedback. This re-
search was supported in part by the NSERC/ AITF/ FCMG IRC pro-
gram in Scalable Reservoir Visualization.

ROCHA ET AL.: DECAL-MAPS: REAL-TIME LAYERING OF DECALS ON SURFACES FOR MULTIVARIATE VISUALIZATION 829

Fig. 10. (a) and (b) Multivariate geo visualization combining nuclear
power plants (green decals), population density (sequential orange
colomap) and earthquakes displayed at two levels of zoom. Number of
reactors for each nuclear plant is visualized using saturation. (c) Earth-
quake decals of several magnitudes clustered in the Indonesia area; (d)
a closer view showing the locations more precisely.

Fig. 11. (a) Earthquake decal-map; (b) Nuclear plant decal-map.

Earthquake layer: The earthquake data consists of a distribution
of earthquakes and their magnitude on the Richter scale. The distri-
bution shows locations (visual variable position) where earthquakes
are recurrent. For magnitude, we use a decal composed of concentric
circles and four main colors [47]. We create a decal-map using these
four glyphs as illustrated in Fig. 11(a). In NSHM [47], the size of
the earthquake glyphs is larger during an overview, resulting in over-
lapping glyphs, and smaller in a close view to provide details about
the specific locations of the earthquakes (details-on-demand). Our de-
cal mapping technique is easily able to accommodate this. We first
choose a maximum radius for the spheres (decal size). Using this ra-
dius, we process the earthquake distribution to obtain the sub-layers
as described in Sec. 4.4 and control the decal size based on the level
of zoom. Fig. 10(c and d) illustrates two levels of zoom for the earth-
quake layer. Observe that this layer has several overlapping decals
since earthquakes are recurrent at specific locations. This generates a
high number of sub-layers (32 in our case using an earthquake data
with frequency ≥ 4 within a month). However, since there are few
decals, the overall performance is not impacted.

Nuclear plant layer: The NP data contains information about the
number of reactors at various locations where NPs are present. Similar
to earthquakes, the visual variable position is used to visualize NP
locations. In NSHM [47], a nuclear power plant is represented as a
green glyph containing a lightning bolt in the middle (Fig. 11(b)). We
use the same glyph as a decal. Additionally, we visualize the number
of reactors (ordinal/quantitative data) by changing the color saturation;
the range is quantized to five bins. Therefore, we obtain an overview
of areas with high and low number of reactors. Moreover, we visualize
the NP decals using the same details-on-demand approach applied to
the earthquake layer (Fig. 10).

Fire layer: We visualize fire detection data captured during a pe-
riod of 7 days in Jan. 2016. From this data, we observe that fire detec-
tion is common in forest areas such as the African Savanna (Fig. 9(b)).
Like NSHM [47], we visualize the fire detection distribution using red
dots. The point size is slightly increased depending on the zoom level.

5.2 Multivariate Geological Data Visualization

In the oil and gas domain, geological reservoir models are represented
as irregular or regular hexahedral grids embedding several geological
properties that describe the reservoir. The properties can be static or
dynamic [60]. Reservoir engineers explore these properties as param-

geological data visual mapping
rock type pastel colormap
porosity proximity between decals

oil flow direction red arrow decal
oil flow magnitude decal transparency and size

water flow direction blue arrow decal
water flow magnitude decal transparency and size

Table 3. Mapping geological data attributes to visual representations.

eters for better prediction of oil recovery. They aim to study the spa-
tial configurations of properties to check data correlations and identify
connected areas. The goal is to propose optimal reservoir development
strategies and to better predict dynamic reservoir performance.

However, despite the nature of this multivariate problem, most com-
mercial visualization systems (e.g. Eclipse R© [43] and Petrel R© [44])
in this domain only rely on color-based mono-visualizations of geo-
logical properties without considering aspects such as data type. This
limits visualizing multiple properties within the same reservoir con-
text. Moreover, based on our discussions with domain experts, this
visualization approach forces the viewer to frequently toggle between
different properties for supporting data exploration tasks.

Motivated by the need to visualize multiple attributes, we introduce
for the first time in this domain, a multifield illustrative visualization
of a reservoir simulation model combining six attributes: rock type,
porosity, oil flow direction and magnitude, and water flow direction
and magnitude. We visualize these attributes on the surface of the
hexahedral grid. Even though reservoir grids may have degenerate
cells (to embed geological features such as faults [60]), our technique
works well since it does not depend on the surface representation.

For our example, we use the Zmap simulation reservoir
model (Fig. 1(e)). Since this model is relatively flat, we use the Eu-
clidean approximation for the radial coordinate. The data consists of
a black oil simulation conducted by a domain expert. The main goal
of this simulation is to analyze the process of oil recovery. During the
simulation, water is injected at a location of the reservoir (using an
injection well) to push the oil to another location from where it is to
be extracted (using a production well) [60]. Oil migration depends on
other properties such as porosity, rock type and permeability, reinforc-
ing the need to provide an integrated multivariate visualization.

Visualization Design Table 3 shows a summary of our visual-
ization design. Many of the design ideas come from initial discussions
with domain experts, literature review as well as inspiration from geo-
logical illustrations. It is important to note that this is an initial design.
An in-depth domain problem characterization, task requirements re-
search and evaluation are required. However, we consider these to be
out of the scope of this paper.

Rock type layer: Within reservoir models, rock type is represented
as a set of indices. Thus, the visual variable suitable for rock type is
the one used to represent categorical data (no intrinsic ordering) [59].
Since each reservoir usually has just a few different rock types, we use
a pastel color scale to represent each rock type (Fig. 12). Pastel color
scales have been applied to categorize areas in 2D maps with minimum
visual interference between layered objects such as lines (e.g. lines
used to represent rivers) [59].

Porosity layer: Porosity is a volumetric quantity expressed as a
percentage that measures the capacity of rocks to store fluids [60].
Naturally, visual variables such as value and position can be used for
indicating high and low values of porosity. In our case, we adopt posi-
tion; highly clustered areas indicate low porosity and vice versa. Our
inspiration for this choice comes from traditional illustrations where
porosity is represented as a set of rock grains packed in a certain con-
figuration (Fig. 13(b)). In our design, we vary the distribution of decals
to convey porosity. For the porosity decal, we use the normal map of
a sphere combined with the color of the rock type. It gives the impres-
sion that the porosity ‘grains’ are inside the reservoir model (Fig. 12).
Moreover, it decreases the visual interference with other layers.

Oil flow layer: Oil flow is visualized using a red arrow decal-map
(Fig. 14(a)). This creates a high contrast with the rock type and poros-
ity background. Red is also a conventional choice for visualizing oil

Fig. 12. Layering on the surface of a reservoir model combininig rock type, porosity, and oil and water flow.

Fig. 13. (a) Porosity visual mapping; (b) geological illustration of poros-
ity.

Fig. 14. (a) Water and oil decal-maps; (b) decal placement.

(domain expert feedback). In our design, we orient the arrow decal to
follow the oil flow direction using the approach introduced in Sec. 3.4,
whereas the magnitude is used to control the size and transparency
of the decal. We use both size and transparency due to the fact that
the size of the decals is altered due to perspective projection. Design
guidelines recommend the use of orthogonal projection, if possible,
when using size as a visual variable [59]. Since we do not want to
compromise the 3D visualization, we decided to reinforce the oil flow
magnitude by using transparency as a secondary visual variable. Other
variables such as saturation or value can also be considered. We use
transparency because it also reduces visual clutter by emphasizing ar-
eas of the model where the magnitude of the oil flow is high; this can
be useful for analyzing the process of oil recovery.

Water flow layer: For water flow, we use a design similar to the
oil flow layer. We use a blue arrow (domain expert feedback) decal-
map to visualize water flow direction (Fig. 14(a)) as well as size and
transparency to encode water flow magnitude.

Decal placement: We need to consider decal placement strategies
for porosity, oil and water flow. For the porosity distribution, we map
the porosity values (generally between 0-0.3 (30%)) to proximity us-
ing an importance driven Poisson sampling technique [8]. We slightly
overlap the ‘grains’ to increase the sense of connectivity [59]. For the
placement of the oil and water flow decals, we use the quad faces of
the reservoir grid (Fig. 14(b)). We place a decal at the center of each
triangle of the quad face. This helps decrease decal overlapping be-
tween the layers. To increase the sense of flow and connectivity, we
slightly overlap the arrow decals with each other.

Observations: Fig. 12(c) illustrates our multivariate illustrative vi-
sualization combining rock type, porosity, oil, and water flow mea-
surements. Flow characteristics depend on porosity. The green areas
of the model are part of a channel with high porosity (Fig. 1(e)); this
gives rise to a higher flow rate. In blue areas, the porosity is lower
making oil and water flow less; light red areas are impenetrable.

When designing a layered visualization, we need to consider visual
cues that help us segment each layer independently so that we can un-
derstand each property clearly. A designer has to consider variables
such as color, contrast, depth cues, and the concept of integral and
separable dimensions [59]. In Fig. 12(a), the shading variation caused
by the normal map used to represent porosity gives rise to the corn-

sweet effect [59]: water flow arrows appear to be over the porosity
layer (Fig. 12(b)). Additionally, we applied a soft blurred shadow to
the flow decals (Fig. 14). This is similar to an unsharpen mask or halo
effect which helps separate objects from the background [59]. Our
layering design is further aided by the use of light colors, a normal
texture (shading) and primary solid colors (arrows).

Last but not least, our visualization represents the data in an illus-
trative fashion. It is intuitive to visualize porosity using grains, flow
using arrows and rock type via color. A quick glance of the visualiza-
tion can tell a lot about the phenomenon thus facilitating the interaction
between professionals from different backgrounds.

6 CONCLUSION AND FUTURE WORK

We introduced the use of decals and decal-maps as a new way of rep-
resenting multivariate data on surfaces. To map decals on surfaces,
we proposed a real-time technique that computes a local parametriza-
tion approximating the geodesic distance locally without relying on
expensive computations. In order to obtain a better local geodesic
approximation, we discussed and contrasted three distances. We pro-
vided an efficient and simple implementation of our technique, taking
advantage of the graphics pipeline. We demonstrated the applicability
and usefulness of our technique via case studies from two different do-
mains. Another example of the broad applicability of our technique is
shown in Fig. 1(b) where we precomputed the overlapping sub-layers
and rendered the decals in realtime to generate a texture pattern cover-
ing the entire surface of the bunny model such as lapped textures [37].

We also introduced a way of deforming decals locally based on the
angular coordinate of our local parametrization. This can be useful
in applications such as flow visualization. An example is shown in
Fig. 1(a). This figure illustrates a synthetic vector field generated over
the surface of the bunny model. We deformed brush stroke decals
based on the underlying vector field and distributed decals densely
over the surface to achieve an effect similar to LIC.

Exploring the design space is critical in multivariate visualiza-
tions [46] and we hope that our work will facilitate this exploration.
The following are some of the lines of investigation that our work
paves the way for. (1) A further detailed investigation of the radial
coordinate in order to find better local surface approximations of the
geodesic distance. (2) A detailed investigation of deformation based
on the angular coordinate. (3) The study of heuristics and methods to
obtain an automatic initial radius size from the surface. (4) Investiga-
tion of approaches for creating multiscale multivariate visualizations
using decal-maps on surfaces. (5) The use of interaction techniques
such as lenses to explore layering. (6) Investigation of techniques to
interact with decals such as click and zoom to provide additional in-
formation about the data. (7) Application of decal-mapping to other
contexts such as non-photorealistic rendering and texture coverage.

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for their constructive com-
ments, Hamidreza Hamdi for providing the reservoir data, and Andrew
Owens and Sowmya Somanath for their valuable feedback. This re-
search was supported in part by the NSERC/ AITF/ FCMG IRC pro-
gram in Scalable Reservoir Visualization.

830 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 1, JANUARY 2017

REFERENCES

[1] R. Borgo, J. Kehrer, D. H. Chung, E. Maguire, R. S. Laramee, H. Hauser,
M. Ward, and M. Chen. Glyph-based visualization: Foundations, design
guidelines, techniques and applications. Eurographics STARs, pages 39–
63, 2013.

[2] J. Bowers, R. Wang, L.-Y. Wei, and D. Maletz. Parallel poisson disk
sampling with spectrum analysis on surfaces. In ACM TOG, volume 29,
page 166. ACM, 2010.

[3] A. Brambilla, R. Carnecky, R. Peikert, I. Viola, and H. Hauser. Illustrative
flow visualization: State of the art, trends and challenges. In EuroGraph-
ics STARs, pages 75–94, 2012.

[4] S. Bruckner, P. Rautek, I. Viola, M. Roberts, M. C. Sousa, and M. E.
Gröller. Hybrid visibility compositing and masking for illustrative ren-
dering. Computer & Graphics, 34(4):361–369, 2010.

[5] B. Cabral and L. C. Leedom. Imaging vector fields using line integral
convolution. In Proc. of SIGGRAPH, pages 263–270. ACM, 1993.

[6] R. Carnecky, B. Schindler, R. Fuchs, and R. Peikert. Multi-layer illustra-
tive dense flow visualization. In CGF, pages 895–904, 2012.

[7] H. Chernoff. The use of faces to represent points in k-dimensional
space graphically. Journal of the American Statistical Association,
68(342):361–368, 1973.

[8] M. Corsini, P. Cignoni, and R. Scopigno. Efficient and flexible sampling
with blue noise properties of triangular meshes. IEEE TVCG, 18(6):914–
924, 2012.

[9] R. A. Crawfis and M. J. Allison. A scientific visualization synthesizer. In
Proc. of Vis., pages 262–267. IEEE, 1991.

[10] E. de Groot, B. Wyvill, L. Barthe, A. Nasri, and P. Lalonde. Im-
plicit decals: Interactive editing of repetitive patterns on surfaces. CGF,
33(1):141–151, 2014.

[11] M. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-
Hall, 1976.

[12] R. Fuchs and H. Hauser. Visualization of multi-variate scientific data. In
CGF, pages 1670–1690, 2009.

[13] R. Gasteiger, M. Neugebauer, O. Beuing, and B. Preim. The flowlens: A
focus-and-context visualization approach for exploration of blood flow in
cerebral aneurysms. IEEE TVCG, 17(12):2183–2192, 2011.

[14] B. Geng, H. Zhang, H. Wang, and G. Wang. Approximate poisson disk
sampling on mesh. Science China Inf. Sciences, 56(9):1–12, 2011.

[15] C. G. Healey. Formalizing artistic techniques and scientific visualization
for painted renditions of complex information spaces. In IJCAI, pages
371–376, 2001.

[16] J. Kehrer and H. Hauser. Visualization and visual analysis of multifaceted
scientific data: A survey. IEEE TVCG, 19(3):495–513, 2013.

[17] R. Khlebnikov, B. Kainz, M. Steinberger, M. Streit, and D. Schmalstieg.
Procedural texture synthesis for zoom-independent visualization of mul-
tivariate data. In CGF, pages 1355–1364, 2012.

[18] R. M. Kirby, D. F. Keefe, and D. H. Laidlaw. Painting and visualization.
In Visualization Handbook, pages 873–891. Academic Press, 2004.

[19] R. M. Kirby, H. Marmanis, and D. H. Laidlaw. Visualizing multivalued
data from 2d incompressible flows using concepts from painting. In Proc.
of Vis., pages 333–340. IEEE, 1999.

[20] J. Krassnigg. A deferred decal rendering technique. In E. Lengyel, editor,
Game Engine Gems 1, pages 271–280. Jones and Bartlett, 2010.

[21] D. Laidlaw. Loose, artistic textures for visualization. IEEE CG&A,
21(2):6–9, 2001.

[22] D. H. Laidlaw, E. T. Ahrens, D. Kremers, M. J. Avalos, R. E. Jacobs, and
C. Readhead. Visualizing diffusion tensor images of the mouse spinal
cord. In Proc. of Vis., pages 127–134. IEEE, 1998.

[23] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and
D. Weiskopf. The state of the art in flow visualization: Dense and texture-
based techniques. In CGF, pages 203–221, 2004.

[24] S. Lefebvre, S. Hornus, and F. Neyret. Texture sprites: Texture elements
splatted on surfaces. In Proc. of I3D, pages 163–170. ACM, 2005.

[25] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen. Over
two decades of integration-based, geometric flow visualization. In CGF,
pages 1807–1829, 2010.

[26] B. J. Meier. Painterly rendering for animation. In Proc. of SIGGRAPH,
pages 477–484. ACM, 1996.

[27] T. Munzner. Visualization Analysis and Design. CRC Press, 2014.
[28] NASA. Active fire data. http://tinyurl.com/j3sv4pl, 2016.

[Online; accessed 25-March-2016].
[29] NASA. Ny: Nasa sedac. http://sedac.ciesin.columbia.

edu/, 2016. [Online; accessed 25-March-2016].
[30] H. Nguyen. GPU Gems 3: Broad-Phase Collision Detection with CUDA.

Addison-Wesley Professional, 2007.
[31] D. Palke, Z. Lin, G. Chen, H. Yeh, P. Vincent, R. Laramee, and

E. Zhang. Asymmetric tensor field visualization for surfaces. IEEE
TVCG, 17(12):1979–1988, 2011.

[32] H. K. Pedersen. Decorating implicit surfaces. In Proc. of SIGGRAPH,
pages 291–300. ACM, 1995.

[33] Z. Peng, E. Grundy, R. S. Laramee, G. Chen, and N. Croft. Mesh-driven
vector field clustering and visualization: An image-based approach. IEEE
TVCG, 18(2):283–298, 2012.

[34] Z. Peng and R. S. Laramee. Vector glyphs for surfaces: A fast and sim-
ple glyph placement algorithm for adaptive resolution meshes. In VMV,
pages 61–70, 2008.

[35] E. Persson. Volume decals. In GPU Pro 2, pages 115–120. A. K. Peters,
Ltd., 2011.

[36] H. Pottmann, T. Steiner, M. Hofer, C. Haider, and A. Hanbury. The
isophotic metric and its application to feature sensitive morphology on
surfaces. Springer, 2004.

[37] E. Praun, A. Finkelstein, and H. Hoppe. Lapped textures. In Proc. of
SIGGRAPH, pages 465–470, 2000.

[38] P. Rautek, S. Bruckner, M. E. Gröller, and I. Viola. Illustrative visu-
alization: New technology or useless tautology? SIGGRAPH Comput.
Graph., 42(3), 2008.

[39] P. Ringrose and M. Bentley. Reservoir model design. Springer, 2015.
[40] T. Ropinski, S. Oeltze, and B. Preim. Survey of glyph-based visualization

techniques for spatial multivariate medical data. Computer & Graphics,
35(2):392–401, 2011.

[41] J. Sanyal, S. Zhang, J. Dyer, A. Mercer, P. Amburn, and R. J. Moorhead.
Noodles: A tool for visualization of numerical weather model ensemble
uncertainty. IEEE TVCG, 16(6):1421–1430, 2010.

[42] H. Schäfer, B. Keinert, M. Nießner, and M. Stamminger. Local painting
and deformation of meshes on the gpu. CGF, 2014.

[43] Schlumberger. Eclipse industry reference reservoir simulator, 2014.
[44] Schlumberger. Petrel e&p software platform, 2014.
[45] R. Schmidt, C. Grimm, and B. Wyvill. Interactive decal compositing with

discrete exponential maps. ACM TOG, 25(3):605–613, 2006.
[46] D. Schroeder and D. F. Keefe. Visualization-by-sketching: An artist’s

interface for creating multivariate time-varying data visualizations. IEEE
TVCG, 22(1):877–885, 2016.

[47] N. N. SEDAC. Sedac hazard mapper. http://tinyurl.com/
ht8rw7b, 2016. [Online; accessed 25-March-2016].

[48] G. Sellers, R. S. Wright, and N. Haemel. OpenGL SuperBible: Compre-
hensive Tutorial and Reference. Addison-Wesley, 2013.

[49] L. G. Tateosian, C. G. Healey, and J. T. Enns. Engaging viewers through
nonphotorealistic visualizations. In Proc. of NPAR, pages 93–102. ACM,
2007.

[50] R. Taylor. Visualizing multiple fields on the same surface. IEEE CG&A,
22(3):6–10, 2002.

[51] M. Termeer. Comprehensive Visualization of Cardiac MRI Data. PhD
thesis, Vienna University of Technology, 2009.

[52] M. Teschner, B. Heidelberger, M. Müller, D. Pomerantes, and M. H.
Gross. Optimized spatial hashing for collision detection of deformable
objects. In VMV, volume 3, pages 47–54, 2003.

[53] M. Tory and T. Möller. Human factors in visualization research. IEEE
TVCG, 10(1):72–84, 2004.

[54] T. Urness, V. Interrante, E. Longmire, I. Marusic, S. O’Neill, and T. W.
Jones. Strategies for the visualization of multiple 2d vector fields. IEEE
CG&A, 26(4):74–82, 2006.

[55] T. Urness, V. Interrante, I. Marusic, E. Longmire, and B. Ganapathisub-
ramani. Effectively visualizing multi-valued flow data using color and
texture. In Proc. of Vis., page 16. IEEE, 2003.

[56] R. van Pelt, R. Gasteiger, K. Lawonn, M. Meuschke, and B. Preim. Com-
parative blood flow visualization for cerebral aneurysm treatment assess-
ment. CGF, 33(3):131–140, 2014.

[57] VisItUsers. Aneurysm data. http://tinyurl.com/jcdmdlv,
2016. [Online; accessed 10-June-2016].

[58] M. O. Ward. Multivariate data glyphs: Principles and practice. In Hand-
book of Data Visualization, pages 179–198. Springer, 2008.

[59] C. Ware. Information visualization: perception for design. Elsevier,
2012.

[60] P. William C. Lyons and B. Gary J Plisga. Standard Handbook of
Petroleum and Natural Gas Engineering. Elsevier Science, 2011.

