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Abstract
Subsurface reservoir models have a high degree of uncertainty regarding reservoir geometry and structure. A range of conceptual
models should therefore be generated to explore how fluids-in-place, reservoir dynamics, and development decisions are affected by
such uncertainty. The rapid reservoir modelling (RRM) workflow has been developed to prototype reservoir models across
scales and test their dynamic behaviour. RRM complements existing workflows in that conceptual models can be prototyped,
explored, compared, and ranked rapidly prior to detailed reservoir modelling. Reservoir geology is sketched in 2D with
geological operators and translated in real-time into geologically correct 3D models. Flow diagnostics provide quantitative
information for these reservoir model prototypes about their static and dynamic behaviours. A tracing algorithm is
reviewed and implemented to compute time-of-flight and tracer concentrations efficiently on unstructured grids. Numerical
well testing (NWT) is adopted in RRM to further interrogate the reservoir model. A new edge-based fast marching
method is developed and implemented to solve the diffusive time-of-flight for approximating pressure transients efficiently
on unstructured tetrahedral meshes. We demonstrate that an implementation of the workflow consisting of integrated
sketch-based interface modelling, unstructured mesh generation, flow diagnostics, and numerical well testing is possible.
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1 Introduction

The spatial distribution of multiscale geological hetero-
geneities in subsurface reservoirs, for example hydrocarbon
and geothermal reservoirs or saline aquifers for CO2 stor-
age, is uncertain in the subsurface. To assess the impact
of this uncertainty, a number of reservoir models are typ-
ically built, ranked, and compared for reservoir appraisal.
Additionally, we may also want to know how changing
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well placements and controls affect fluid flow in the reser-
voir while also considering uncertainties in the geologi-
cal structures and distribution of petrophysical properties.
Conventional workflows consisting of detailed geological
modelling and full-physics transient simulation could be
used for such ranking and exploring purposes but this
approach can be time-consuming. The slow turnaround
time of conventional workflows is one of the reasons that
geological concepts are commonly locked-in early during
reservoir development, i.e. the time when economic uncer-
tainty is greatest, without exploring different conceptual
models [6, 10]. However, different conceptual models may
yield considerably different and distinct predictions of reser-
voir volumes, fluid flow patterns, and optimal development
strategies during the life time of a field [2, 7, 49]. Therefore,
it is desirable to develop a tool to rapidly prototype mod-
els and rank various concepts prior to detailed full-physics
reservoir modelling and simulation.

Realising the importance and challenge of exploring con-
ceptual models efficiently [31] has introduced the rapid
reservoir modelling (RRM) workflow and software com-
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bining techniques of sketch-based interface and modelling
(SBIM) [47], automatic geological operators, unstructured
tetrahedral meshes, flow diagnostics, and numerical well
testing. The aim of RRM is not to replace full-physics simu-
lation, which with recent development in computer science
is becoming less time-consuming, but to provide a tool for
prototyping, building, and ranking conceptual models effi-
ciently without consuming much computational resources,
especially in scenarios where little data is available and
geological uncertainty is large. SBIM allows users to build
surface-based reservoir models (SBRM) [9, 24, 25, 29–34,
38, 39, 48, 53, 71] by sketching geology directly on com-
puter screens, in a manner that is intuitive, interactive, and
efficient. The advantage of SBRM is that geological hetero-
geneities across multiple scales can be accurately modelled
by surfaces. The drawback is that heterogeneity can only
described by introducing surface boundaries. This excludes
a systematic application of the conventional property mod-
elling techniques and makes the models very complex if
realistic sedimentary features must be represented at reser-
voir scale. While the performance gain of RRM will be
lost if such a resolution is attempted, RRM can be used to
quickly upscale small-scale geological features to estimate
effective properties that can be used at larger scales.

3D models can be created from 2D surfaces by sketching
on multiple cross-sections or by extrapolation in 3D. In the
process of sketching, geological operators are automatically
implemented to ensure the model is geologically correct
[51]. In SBRM, geological heterogeneities are represented
by discrete volumes bounded by surfaces. Therefore, the
model is grid-independent. Grids are built on-the-fly and
only when needed for hydrocarbon-in-place estimation,
flow diagnostics, and numerical well testing. Unstructured
tetrahedral meshes are generated adapting to the bounding
surfaces such that complex reservoir geometries can be
preserved [43]. There are many algorithm and software
tools to generate unstructured tetrahedral meshes. In RRM,
we incorporate the Delaunay-based mesh generator TetGen
[61].

Flow diagnostics refer to numerical experiments to
probe a reservoir model efficiently [58]. The basis of flow
diagnostics is the distribution of time-of-flight (TOF) and
tracer concentrations (TC). TOF is the time it takes for
a fluid particle to travel from an inflow boundary to its
current location. TC denotes the percentage of flow coming
from an inflow boundary associated with the tracer. TOF
and TC provide qualitative 3D visualisation of unswept
regions and dynamic well connectivity, as well as swept
and drained reservoir areas. While flow diagnostics can be
obtained based on streamline methods for nearly orthogonal
structured grids [5, 64], it is challenging to trace streamlines
accurately for general corner-point and unstructured meshes
[27, 41, 50]. Therefore, [58] solved TOF and TC directly

on the grid blocks of the reservoir model by use of
the finite volume method for flow diagnostics. The cells
are reordered by a depth-first-search algorithm such that
TOF and TC can be computed locally volume-by-volume
[46]. Flow diagnostics were later applied to reservoir
development optimisation [45]. Additional properties such
as the dynamic Lorenz coefficient [60] can be easily
computed from the TOF distribution and provide further
insight in the dynamic behaviour of a reservoir.

The prerequisite of solving TOF and TC is a velocity
field which can be exported from a detailed multiphase
flow simulation or computed directly given a steady-
state assumption [37]. The two-point flux approximation
is consistent for K-orthogonal grids, but unstructured
tetrahedral meshes are usually not K-orthogonal. Therefore,
the control volume finite element method (CVFEM), which
essentially uses a multi-point flux approximation (MPFA)
and is consistent on unstructured tetrahedral meshes [22, 28,
44], is employed to solve pressure and velocity in RRM. A
well documented disadvantage of CVFEM is fluid smearing
or numerical dispersion between adjacent elements with
distinct petrophysical properties and high order methods
have been developed to reduce the smearing effect [1, 19,
23, 32, 52].

The linear equation system for pressure is solved by an
efficient algebraic multigrid (AMG) method [63] available
in SAMG [26] or HYPRE [4]. Then, TOF and TC are
solved by the node-centred control/finite volume method
in an efficient volume-by-volume manner after reordering
the nodes. A tracing algorithm based on monotone edges
is developed to reorder the nodes for situations involving
non-Darcy edges where positive fluxes point from lower
to higher pressure [75]. Based on TOF and TC, a range
of quantities and dynamic proxies can be derived for flow
diagnostics, such as dynamic Lorenz coefficient, sweep
efficiency, and well allocation factors [45, 46].

Numerical well testing (NWT) is also termed geological
well testing where numerical simulations are conducted
on reservoir models to obtain well testing signals [11,
15, 40]. NWT has been applied to a range of reservoir
problems. For example, [14] developed a geoengineering
workflow based on NWT for correlating pressure transients
of possible parameters to known geological features.
Corbett et al. [13] systemically studied the effects of
microporosity, macroporosity, and fracture porosity on
pressure dissipation and their apparent homogenisation.
Employing the geoengineering workflow, [20] studied the
well test signals of naturally fractured reservoirs and
explored the limitations of characteristic flow behaviours
inherent to the double-porosity assumption. In these studies
and applications of NWT, the pressure diffusivity equation
is solved using commercial or open-source reservoir
simulation software.
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An alternative for NWT is to compute the diffusive time-
of-flight (DTOF) of pressure perturbation front in petroleum
reservoirs [18, 67, 68, 72]. DTOF can be regarded as
a generalised concept of depth-of-investigation. The fast
marching method (FMM) can be employed for computing
DTOF efficiently on Cartesian grids to accelerate NWT [55,
59, 65]. However, it is difficult to preserve monotonicity
in the solution by FMM on general unstructured meshes
[56].

In this paper, an edge-based fast marching method with
path correction (EFMMC) is developed to approximate
DTOF efficiently on unstructured tetrahedral meshes.
This allows us to estimate pressure transients, depth-
of-investigation, and depletion efficiently in the RRM
workflow. The combination of SBIM, flow diagnostics,
and NWT allows for rapid prototyping and exploration of
reservoir models. This is useful for choosing reliable models
prior to detailed reservoir simulation, especially when there
is no time or need for detailed reservoir simulation on a
range of models.

This paper is organised as follows. First, flow diag-
nostics for unstructured meshes are reviewed. Second, an
approximation method for NWT based on diffusive TOF
on unstructured meshes is developed. Third, the imple-
mentation of both flow diagnostics and NWT for RRM is
demonstrated. Fourth, the paper is concluded.

2 Review of flow diagnostics
on unstructured grids

2.1 Governing equations for flow diagnostics

For flow diagnostics, the flow is assumed to be incom-
pressible and steady-state [58]. The governing equations for
pressure and velocity are

v = −λ∇p , (1)

∇ · v = q , (2)

where p is the flow potential that equals to P − ρgz,
P is absolute pressure, ρ is density, g is gravitational
acceleration. Hereafter, p is simply referred to as pressure.
λ is total mobility equal to (kro/μo + krw/μw)K where
K is the permeability tensor, kro and krw are the relative
permeabilities of oil and water, and μo and μw are the
viscosities of oil and water, respectively. v is total Darcy
velocity and q is the volumetric source term. From Eqs. 1
and 2, we obtain the elliptic equation for pressure

−∇ · (λ∇p) = q . (3)

The governing equations for time-of-flight (TOF) and tracer
concentration (TC) in porous media are

v · ∇τ = φ , (4)

v · ∇c = 0 , (5)

where τ is TOF, c is TC, and φ is porosity. The two
equations have the same hyperbolic advective transport
form

v · ∇u = b , (6)

where u is TOF or TC and b is the corresponding source
term. If ∇ · v = 0, Eq. 6 can be rewritten in the following
form to help finite volume discretisation.

∇ · (vu) = b . (7)

Total velocity is in steady-state when well-rates and
interactions among reservoir boundaries, such as faults and
aquifer contacts, are constant. The controlled numerical
experiment using a constant velocity field is a general
feature of flow diagnostics [45] and is also employed
in commercial software 3DSL [12]. In situations where
transient effects (e.g. gravity segregation) are important
for recovery, flow diagnostics are too simplistic, but still
better than relying on the visualisation of static properties to
compare and contrast reservoir models.

Flow diagnostics are not meant to replace a full-
physics transient simulation but to provide dynamic proxies
for ranking reservoir models prior to commencing more
detailed reservoir simulation studies. For example, models
associated with higher dynamic Lorenz coefficients tend to
have greater sweep efficiency [45]. Flow diagnostics are
particularly useful in situations where there is no time or
need to run a full-physics detailed reservoir simulation to
rank and compare a range of models [58].

2.2 Solution strategy for TOF and TC

The well-known control volume finite element method
(CVFEM) [3, 42] is adopted for solving the elliptic
equation for pressure in Eq. 3. Then velocity is obtained
straightforwardly from Eq. 2 and applied to solve TOF
and TC in Eqs. 4 and 5. Pressure is piecewise linear and
velocity is piecewise constant in tetrahedral elements, while
TOF and TC are piecewise constant in control volumes that
are the dual of the tetrahedral elements. The details of the
numerical method can be found in [75]. Here, we review the
workflow, which is comprised of the following steps:

1. Solve Eq. 3 for pressure by use of CVFEM.
2. Obtain velocity for each tetrahedral element from Eq. 2.
3. Assemble fluxes between control volumes. An edge-

based data structure is employed to store fluxes.
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4. Solve Eq. 7 for TOF and TC by use of the
control volume method, i.e. node-centred finite volume
method.

In particular, we have developed an efficient monotone
edge approach for solving TOF and TC efficiently volume-
by-volume after reordering the nodes by DFS [75]. The
control volume discretisation of Eq. 7 is
∑

j∈Ei

uijFij = biVi , (8)

where Fij is the flux from control volume i to j , Ei is
the set of all neighbouring nodes of node i, and uij is the
value of u at the midpoint of edge ij . b is assumed to
be constant in each control volume. Applying single-point
upwind approximation for uij and mass conservation yields

ui =
∑

j∈EU
i
ujFij

∑
j∈EU

i
Fij

− biVi∑
j∈EU

i
Fij

, (9)

where EU
i and ED

i are sets of upwind and downwind
nodes for node i, respectively. TOF and TC could be
solved volume-by-volume after being reordered by DFS
[46]. However, there might be edges where positive Fij

points from lower to higher pressure, or in other words,
where Fij is against Darcy’s law and is not monotone.
These edges are termed non-Darcy edges while others are
termed monotone edges. Non-Darcy edges lead to cycles in
DFS and unknowns in a cycle need to be solved iteratively
which is less efficient than volume-by-volume. The first
and second terms on the right-hand-side of Eq. 9 are
advection and source terms. Removing non-Darcy edges in
the advection term, Eq. 9 is approximated by

ui =
∑

j∈ẼU
i
ujFij

∑
j∈ẼU

i
Fij

− biVi∑
j∈EU

i
Fij

, (10)

where ẼU
i only contains nodes in EU

i connected to node
i by monotone edges. The source term in Eq. 10 remains
the same as in Eq. 9. A reduced graph can be built by
monotone edges. DFS on the reduced graph guarantees
a sequence of nodes with no cycles. Then, the tracing
algorithm (Eq. 10) can be applied locally node-by-node
according to the sequence with all upwind nodes already
computed. The solution is very close to that by solving Eq. 9
iteratively because the contribution to ui from advection
of non-Darcy edges is very low compared with that of
monotone edges and the source term.

2.3 Derived quantities

TOF can help identify unswept volumes; TC visualises
reservoir partitioning according to injectors or producers.
In addition, a range of quantities, such as well-pair
pore volume, well allocation factor, flow and storage

capacity, dynamic Lorenz coefficient, sweep efficiency,
and dimensionless time, can be derived straightforwardly
from the solutions of TOF and TC for ranking reservoir
models and development options in reservoir appraisal and
development stages. The details of deriving these quantities
can be found in [45, 58, 60, 75]. We have implemented the
calculation of all these quantities in RRM.

3 An approximationmethod for numerical
well testing on unstructured grids

3.1 Numerical well testing based on diffusive
time-of-flight

Following [11, 13, 14, 20], the geoengineering workflow for
integrated well testing comprises of (1) building reservoir
prototypes of conceptual models from interpretations of
the given outcrop or seismic data; (2) obtaining pressure
transients by simulating draw-down or recovery for a range
of possible properties and well locations; (3) analysing the
numerical well test data; and (4) correlating the pressure
transients to known geological features.

Efficient NWT is based on the diffusive time-of-flight
(DTOF) of pressure front propagation for flows in porous
media. The use of FMM to compute DTOF for propagation
time, drainage volume, and pressure transients is reported in
[59, 67, 68, 72]. The workflow of RRM can be accelerated
by the application of SBIM for building reservoir models
and EFMMC for computing pressure transients. The
transient pressure solution for single-phase flow in porous
media is governed by the diffusivity equation

φμct

∂p

∂t
= ∇ · (K∇p) , (11)

where p is pressure, K is the permeability tensor, ct is
total compressibility, μ is viscosity and φ is porosity. Using
a Fourier transform and the asymptotic solution based on
Eq. 11, it can be shown that the pressure front propagation in
the high frequency limit is governed by the Eikonal equation
[59, 65].

f |∇τ | = 1 , (12)

where f is the isotropic propagation speed. For anisotropic
cases, the Eikonal equation can be written as [17]

∇τT · F 2 · ∇τ = 1 , (13)

where τ is DTOF and F 2 is to square each element in F

individually. The speed tensor F has entries

Fij =
√

Kij

φμct

. (14)
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If Kij is replaced by isotropic k, the expression for f is
obtained. τ is related to the physical time t of pressure front
propagation by

τ = √
βt , (15)

where β = 2, 4 and 6 for 1D line, 2D radial, and 3D
spherical flow patterns with homogeneous properties [72].
For cases with heterogeneous properties, t and β can be
approximated by [73]

t =
(∫ τ

0

dτ ′
√

β(τ ′)

)2

, (16)

β(τ) = 2
dlnVp(τ)

dlnτ
, (17)

where Vp(τ) denotes the drainage volume at τ .
The drainage volume at time t is denoted as V (t) and can

be computed numerically as the sum of all volumes with
propagation time ≤ t . For NWT, we assume that the Darcy
flux is negligible outside the drainage volume and that
reservoir pressure is approximated by a pseudo-steady-state
solution. For all nodes affected by the pressure disturbance,
the change of pressure with time satisfies [67]

∂p

∂t
≈ − 1

ct

qw

V (t)
, (18)

where qw is well flow rate. A key quantity in well testing is
the pressure derivative �p at the well defined and computed
as [8]

�p = − ∂p

∂ln(t)
≈ t

1

ct

qw

V (t)
. (19)

3.2 An edge-based fast marchingmethod with path
correction

The fast marching method (FMM) can be employed to
solve Eq. 13 on Cartesian and nearly orthogonal corner-
point grids [55]. However, FMM may yield unphysical

results on unstructured tetrahedral meshes and an edge-
based fast marching method (EFMMC) is developed here to
approximate DTOF on unstructured meshes.

A review of FMM on structured and unstructured meshes
is presented in the Appendix.

3.2.1 Homogeneous case

If F is homogeneous, we can compute the DTOF of
each node semi-analytically. Figure 1 shows a simplified
illustration in 2D. Let m be any node in the mesh and o

be the boundary of propagation. The propagation time at o

is zero. The characteristic curve is the straight line passing
through o and m. The global speed profile is an ellipse
centred at o with axes Fx and Fy . In 3D, the global speed
profile is an ellipsoid centred at o with axes Fx , Fy , and
Fz. Let c be the intersection point between the characteristic
line and the speed ellipse or ellipsoid. The speed along
the characteristic is fom = |−→oc|. Therefore, the analytical
solution for τ at node m is

τ ∗
m = |−→om|

fom

. (20)

Applying Eq. 20 on all nodes or cells in the computational
domain yields a semi-analytical solution. The validation of
the semi-analytical method is presented in Section 3.3.1.

3.2.2 Heterogeneous case

Equation 12 is used on unstructured meshes with f denoting
the magnitude of the anisotropic speed in the direction of
propagation normal to the front. The key idea is to construct
local speed profiles as shown in Fig. 2 for a 2D triangular
element ijm. Suppose i is frozen, j and m are unfrozen
and outside of the narrow band. Let the speed tensor F be
F = [Fx, 0; 0, Fy], neglecting the off-diagonal terms. The

Fig. 1 Semi-analytical solution
of the propagation time for an
arbitrary node m in a 2D
unstructured mesh. The global
propagation speed tensor F is
homogeneous and anisotropic. o
is the boundary of propagation
where the propagation time is
zero. The characteristic curve is
a line passing through o and m.
The propagation speed along the
characteristic is |oc|. Therefore,
the semi-analytical solution of
the propagation time at m is
|om|/|oc|
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Fig. 2 Geometrical speed
interpolation using anisotropic
local speed tensor F at node i.
The speed profile is an ellipse.
Triangle ijm is an element in a
2D unstructured mesh. Node c is
the intersection point between
the ellipse and the line passing
through i and m. The speed
along edge im is equal to |ic|.
This plot only shows one
possibility where |ic| < |im|. It
is also possible that |ic| > |im|

local speed profile around node i is an ellipse [73] with axes
Fx and Fy , described as

(x − xi)
2

F 2
x

+ (y − yi)
2

F 2
y

= 1 . (21)

Let the coordinates of m be (xm, ym). The line passing i and
m is

y − yi = ym − yi

xm − xi

(x − xi) . (22)

The coordinates of the common node c can be obtained by
combining Eqs. 21 and 22. Then, the speed along edge im

is simply fim = |−→ic | > 0.
The extension to 3D tetrahedral meshes is straightfor-

ward by constructing a 3D speed profile that is an ellipsoid.
Let the speed tensor F = [Fx, 0, 0; 0, Fy, 0; 0, 0, Fz]; the
speed ellipsoid is given by

(x − xi)
2

F 2
x

+ (y − yi)
2

F 2
y

+ (z − zi)
2

F 2
z

= 1 . (23)

The 3D line passing through i and m becomes

y − yi = ym − yi

xm − xi

(x − xi) , (24)

z − zi = zm − zi

xm − xi

(x − xi) . (25)

The speed fim along edge im of a tetrahedral element can
be obtained similarly as in 2D by combining the ellipsoid
and line functions in Eqs. 23, 24, and 25; we obtain

τm = τi + |−→im|
fim

, (26)

where τm and τi are the propagation time at nodes m and
i, respectively. The solution is guaranteed to be monotone
since fim > 0. As soon as a vertex becomes frozen, all
unfrozen neighbouring nodes are computed and moved to
the narrow band. If a neighbour is already in the narrow
band, it is recomputed using the recently frozen vertex.
The minimum of the old and new τ is adopted. This is
different from FMM on Cartesian grids [55] where the new
propagation time of a cell in the narrow band is obtained

using a quadratic equation involving all frozen neighbouring
cells.

The main source of error for the solution using Eq. 26
is that the path to a node through the edges is usually
different from the path along the characteristic curve. In a
homogeneous model, this error can be quantified as

α = τ ∗
m/τm , (27)

where τ ∗
m and τm are the semi-analytical and numerical

solutions by Eqs. 20 and 26, respectively.
Assuming α is similar for homogeneous and heteroge-

neous models, we can approximate τ by ατm. If the path
correction calculation is not included, the edge-based fast
marching method will generate larger time-of-flight values,
which is not the case with path correction. We will show in
the test cases that this assumption is valid for unstructured
meshes of approximately homogeneous mesh resolution.
On the other hand, if the high- and low-propagation-speed
regions have a high contrast in mesh resolution, the approx-
imation becomes less accurate.

3.3 Validation examples

3.3.1 Box example with homogeneous propagation velocity
tensors

For examples with homogeneous propagation speed,
EFMMC is equivalent to the semi-analytical method.
In this example, we compare FMM on Cartesian
grids with the semi-analytical method. The model is a
100 m × 100 m × 100 m box. The boundary of propaga-
tion where t = 0 is at (0, 0, 0). The isotropic propagation
speed is f = 1 m/s, while the anisotropic speed tensor has
Fx = Fy = 1 and Fz = 0.5 m/s, neglecting the off-diagonal
terms. Both f and F are homogeneous. A series of Carte-
sian grids with increasing resolution are built such that the
first cell is centred at (0, 0, 0), since the propagation time t

is defined on cell centres in Eqs. 31 and 32.
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Fig. 3 Simulated propagation
times using a homogeneous
isotropic speed f = 1 m/s
computed by FMM on a
Cartesian grid (a) and the
corresponding semi-analytical
solution (b) for the box example
of dimension
100 m × 100 m × 100 m. The
propagation starts from (0, 0, 0)

The propagation time for isotropic speed f is computed
numerically by FMM on a 41 × 41 × 41 Cartesian grid
(Fig. 3a). The propagation time arithmetically averaged over
all cells is 99.82 s, with a maximum time of 178.58 s at (100,
100, 100) m. The semi-analytical propagation time field
(Fig. 3b) is very close to Fig. 3a. The average time is 96.53 s
with a maximum of 173.21 s. The difference between the
average propagation time computed semi-analytically and
that numerically by FMM converges proportionally to the
number of cells (Fig. 4).

Next, the anisotropic speed tensor F is used. The
propagation time is computed by FMM on a 41 × 41 × 41
Cartesian grid (Fig. 5a), with an average of 137.94 s
and a maximum of 250.87 s. The semi-analytical solution

(Fig. 5b) has an average of 134.05 s and a maximum of
244.95 s. The difference between the average propagation
time computed semi-analytically and that numerically by
FMM converges proportionally to the number of cells
(Fig. 6).

3.3.2 Heterogeneous example

In this test case, we test EFMMC for an idealised
heterogeneous geological reservoir with large horizontal
dimensions. The purpose of this reservoir model is not to
represent a specific case study but to show that EFMMC
is able to simulate changes in the pressure transient due
to the presence of geological heterogeneity and reservoir

Fig. 4 Convergence of the average propagation time for the box
example with a homogeneous isotropic speed f = 1 m/s obtained
semi-analytically and numerically by FMM on a series of Cartesian

grids with increasing resolution (a). Convergence of the difference
between average propagation times by the semi-analytical method and
FMM (b)
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Fig. 5 Simulated propagation
times using a homogeneous
anisotropic speed tensor F =
(Fx, 0, 0; 0, Fy, 0; 0, 0, Fz) =
(1, 0, 0; 0, 1, 0; 0, 0, 0.5) m/s
computed by FMM on a
Cartesian grid (a) and
semi-analytically (b) for the box
example of dimension
100 m × 100 m × 100 m. The
propagation starts from (0, 0, 0)

boundaries. The model is a 1000 m × 1000 m × 40 m
cuboid (Fig. 7a). The high-permeability region has Kx =
Ky = 200 and Kz = 2 mD, while the low-permeability
region has Kx = Ky = 2 and Kz = 0.5 mD. Viscosity
μ = 1 cp, porosity φ = 0.1, and total compressibility
ct = 10−5 psi−1 are all homogeneous. The propagation
boundary where τ = 0 is at (0, 0, 0). It is obvious that
low-permeability regions have higher τ (Fig. 7b). The new
EFMMC is robust regarding skewed elements (Fig. 8).

The grid convergence of the average DTOF on unstruc-
tured tetrahedral meshes is not as stable as that on structured
tetrahedral meshes (Fig. 9) due to the fact that unstruc-

tured meshes of different resolutions are not exactly of the
same quality. However, the average DTOF on unstructured
tetrahedral meshes is always between those computed on
structured tetrahedral meshes and Cartesian meshes. The
convergence study validates the accuracy of EFMMC on
tetrahedral meshes.

3.3.3 Numerical well testing

The model is 1000 m × 1000 m × 40 m. A vertical
producing well modelled as a line of nodes is placed in the
centre of the reservoir that penetrates the entire formation.

Fig. 6 Convergence of the average propagation time for the box
example with a homogeneous anisotropic speed tensor F =
(Fx, 0, 0; 0, Fy, 0; 0, 0, Fz) = (1, 0, 0; 0, 1, 0; 0, 0, 0.5) m/s obtained
semi-analytically and numerically by FMM on a series of Cartesian

grids with increasing resolution (a). Convergence of the difference
between average propagation times by the semi-analytical method and
FMM (b)
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Fig. 7 The horizontal permeability field (a) and the DTOF field (b) using EFMMC on a fully unstructured tetrahedral mesh for the heterogeneous
reservoir model of dimensions 1000 m × 1000 m × 40 m

The pressure disturbance propagates from the well. The
production rate is assumed equivalent to qw = 10 rb/day
where rb stands for reservoir barrel.

Firstly, the reservoir is assumed to be homogeneous
with a permeability Kx = Ky = Kz = 0.01 mD,
porosity φ = 0.1, total compressibility ct = 3 × 10−4

psi−1 and fluid viscosity μ = 0.02 cp. Figure 10 shows
the propagation time t computed using EFMMC on an
unstructured tetrahedral mesh that is locally refined near the
well. The front propagates radially from the well towards
the boundary.

From Fig. 10, we can calculate the drainage volume
numerically at time t , denoted as V (t), as the sum of all

Fig. 8 A close-up side view of the highly skewed tetrahedral elements
in the heterogeneous reservoir model

volumes with propagation time ≤ t . Figure 11 compares
V (t) with the analytical solution for an infinite acting
drainage volume V ∗(t) given by [67]

V ∗(t) = πr2hφ = 4φkht

μct

, (28)

where k is the homogeneous isotropic permeability and r

the distance to the well. V (t) and V ∗(t) overlap until the

Fig. 9 Convergence of the average DTOF for the heterogeneous
reservoir model computed using EFMMC on structured tetrahedral
meshes, EFMMC on unstructured tetrahedral meshes and FMM on
Cartesian grids. Structured tetrahedral meshes are created by splitting
Cartesian grids into tetrahedrons rather than using a dedicated meshing
software. The tetrahedrons have a structure so the mesh is termed
structured tetrahedral mesh
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Fig. 10 Plot of pressure front propagation times away from the
centrally located well for a homogeneous reservoir using EFMMC.
The unstructured tetrahedral mesh is locally refined near the well. As
expected, the propagation is almost radial

pressure front reaches no-flow boundaries (Fig. 11). The
slope of the curve for V (t) becomes zero after the entire
reservoir has been drained.

Fig. 11 Drainage volume as a function of time computed using
EFMMC on an unstructured tetrahedral mesh compared with the
analytical solution for an infinite acting reservoir. The two curves
overlap until the no-flow boundaries are reached. The slope of the solid
curve becomes zero after the entire reservoir has been drained

Fig. 12 Pressure derivative, a key diagnostic in well testing, as a
function of time computed by EFMMC on an unstructured tetrahedral
mesh compared with the analytical solution for an infinite acting
reservoir. The two curves overlap until the no-flow boundaries are
reached

Figure 12 plots �p as a function of time at the well. The
analytical solution for an infinite acting reservoir is

�p∗ = qwμ

4φkh
, (29)

obtained by substituting Eq. (28) into Eq. (19). The two
curves overlap until the no-flow boundaries are reached.

Next, a heterogeneous reservoir is assumed. As with the
heterogeneous reservoir depicted in Fig. 7, the reservoir
model is highly idealised and does not represent a specific
case study. Its purpose is to demonstrate that EFMMC is
able to calculate pressure transients that capture geological
heterogeneity and boundary conditions. The well location
and production rate are unchanged. The high-permeability
region has Kx = Ky = Kz = 100 mD, while the
low-permeability regions have Kx = Ky = Kz = 10
mD (Fig. 13a). Porosity φ = 0.1, total compressibility
ct = 3 × 10−4 psi−1 and fluid viscosity μ = 0.02 cp are
homogeneous. Figure 13b presents the propagation time.

For pressure transient analysis, we can record the change
of �p∗ with time at the well (Fig. 14). The changes in the
slope of the derivative curves indicate different propagation
patterns due to the presence of geological heterogeneity
and no-flow boundaries. For validation, the curve obtained
by EFMMC on unstructured tetrahedral mesh is compared
with that by FMM on Cartesian grid [67]. The two curves
indicate similar flow patterns. The comparison of FMM
on Cartesian grids with commercial simulators has been
discussed in [68, 69].
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Fig. 13 Permeability field (a) and resulting propagation time (b) computed by EFMMC on a fully unstructured tetrahedral mesh for a
heterogeneous reservoir. The mesh resolution is approximately homogeneous to improve numerical accuracy. There are 10639 nodes and 46432
tetrahedral elements

There are four phases in the evolution of the pressure
derivative. The first phase is an infinite acting period (< 30
days). The pressure front propagates radially while neither
the low-permeability regions nor the no-flow boundaries
are reached. The second phase is from 30 days to around
700 days. Here the pressure propagation is affected by the
low-permeability regions and propagates mainly linearly
along +y and −y directions. The third phase is from 700
to 6000 days. Here the pressure front has reached the

Fig. 14 Pressure derivative as a function of time computed by
EFMMC on the unstructured tetrahedral mesh in Fig. 13a and by
FMM on a 101 × 101 × 1 Cartesian grid. The number of nodes in the
unstructured mesh is close to the number of cells in the Cartesian grid

boundaries at y = 0 and 1000 m and is mainly propagating
in the low-permeability regions. The fourth phase is after
6000 days when the pressure front reaches the no-flow
boundaries at x = 0 and 1000 m. The change of drainage
volume with time is plotted in Fig. 15, which also indicate
four flow regimes. It is clear that the drainage volume
stays almost constant, reflecting that the pressure front has
reached the no-flow boundaries.

Fig. 15 Drainage volume as a function of time computed by EFMMC
on the unstructured tetrahedral mesh in Fig. 13a and by FMM on a
101×101×1 Cartesian grid. The number of nodes in the unstructured
mesh is close to the number of cells in the Cartesian grid

Comput Geosci (2020) 24:641–661 651



Fig. 16 Sketch-based interface modelling in RRM where curves are sketched on 2D cross sections to build a 3D model (a). Flow diagnostics
window with a surface 4–8 mesh (b)

4 Implementation in RRM prototype

This paper does not present the first time that RRM
has been implemented and earlier, more limited RRM
developments have been discussed in [31, 74, 75]. An
idealised surface-based model representing a series of
stacked channelised sandbodies is sketched (Fig. 16a) to

demonstrate the flexibility of our workflow but not to show
a specific case study. In SBIM, a surface can be created
by sketching on multiple cross-sections or by 3D extrusion.
The sketching is scale independent so that models at basin,
reservoir, inter-well, or outcrop scales can all be created.
Surfaces represent the inner boundaries between different
regions (e.g. sandbodies) in the conceptual reservoir. Outer
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boundaries include the top and bottom sketched surfaces as
well as the four vertical boundaries of the sketching domain.
The heterogeneous model is idealised and only serves to
show that the algorithm leads to pressure derivatives and
drainage volume calculations that account for geological
heterogeneity and boundary conditions.

Four to eight meshes [66] are generated on the surfaces
(Fig. 16b). Four to eight meshes are employed because of
their ease of generation, but other types of triangular meshes
could also be used in principle to represent the surfaces.
Unstructured triangular meshes are generated on the four
vertical outer boundaries adapting to all intersecting curves
of the sketched surfaces. Then, a surface mesh is created by
joining the triangular meshes on all surfaces. Based on the
surface mesh, an unstructured tetrahedral mesh is generated
by TetGen. Other mesh generators could also be used but
we employ TetGen here. In TetGen, extra points might be
added on the surface for improving the quality of tetrahedral
elements [61]. The volume mesh adapts to the surfaces in
the sense that every surface can be described by connected
facets of the tetrahedral elements. In RRM, all steps of mesh
generation are integrated and automatically completed.

We demonstrate the implementation of NWT and flow
diagnostics in RRM for comparing potential well locations.
Permeability is isotropic and heterogeneous (Fig. 17).
Porosity for each region is set to be 0.28. The total pore
volume of this model is about 150 million reservoir barrels.

Fig. 17 Permeability distribution for the model and the unstructured
tetrahedral mesh that adapts to all surfaces

Fig. 18 Propagation time of pressure perturbation front in the
heterogeneous surface-based reservoir model

For numerical well testing, flow is single-phase with
viscosity 1 cP and total compressibility 1 × 10−4 psi−1.
A rate-controlled producer is implemented (Fig. 18). The
well rate is 10 rb/day. Recall that the model is idealised and
only serves to show the RRM functionality. By qualitative
observation, we see that most of the reservoir is drained
before 30 days (Fig. 18). Here we call a volume is drained
if it is reached by the pressure perturbation and starts to
be produced. From the drainage volume plot, we see that
approximately all volumes are drained at the time between
40 and 50 days (Fig. 19). However, the slope of the drainage
volume curve starts to decrease much earlier. From the
pressure derivative plot, it is clear that the slope of derivative
increases considerably at around 18 days when reservoir
boundaries have been reached and the flow enters the
pseudo-steady-state (PSS) stage. Areas of propagation time
> 18 days start to be drained and all volumes are drained at
about 49 days. Before 18 days, the impact of permeability
heterogeneity is seen as small-scale fluctuations in the
pressure derivative curve. The result is approximate as there
are numerical errors due to EFMMC and the transformation
from diffusive TOF to physical time; however, the result still
yields a good approximation of the reservoir dynamics.

Then, a new scenario is modelled where the location of
the producer is changed (Fig. 20). The propagation time
of the pressure perturbation front is recalculated (Fig. 20).
The pressure derivative and evolution of drainge volumes
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Fig. 19 Drainage volume (a) and pressure drop and pressure derivative (b) over propagation time in the heterogeneous model

show three distinct behaviours (Fig. 21). The first stage is
radial infinite acting which is characterised by a line of
approximately zero slope. In the second stage, the pressure

Fig. 20 Propagation time of pressure perturbation front in the
heterogeneous surface-based reservoir model with a different producer
location (compare with Fig. 18)

perturbation reaches one of the reservoir boundaries at
around 5 days and the curve has a positive slope. In the
third stage, the slope becomes steeper and all reservoir
boundaries have been reached. Between the second and
third stages, the change of slope is gradual from when all
reservoir boundaries are reached at around 25 days until
all volumes are drained at about 36.5 days, seen clearly
from Fig. 20. The flow is close to PSS at around 5 days.
If an earlier flow regime close to PSS is desirable, the well
location in Fig. 20 is preferred over that in Fig. 18 in this
idealised example.

For completeness of the workflow, we further demon-
strate the flow diagnostics functionality. The purpose is to
demonstrate the integrated workflow, not to discuss spe-
cific case studies. The comparison of flow diagnostics with
commercial simulators has been discussed by [45, 62].
Flow is assumed to be incompressible. An injector well
and a producer well are assumed to be vertical and pene-
trate the entire model. The well pattern is quarter five-spot.
Well-block pressure values are set on both wells directly
as Dirichlet boundary conditions. The continuous pressure
field indicates that all regions are fully connected (Fig. 22a).
The solution of forward TOF represents the travel time from
the injector (Fig. 22b). As porosity is homogeneous, the
influence of permeability heterogeneity on forward TOF is
clearly seen. There is only one injector and one producer, so
the tracer concentration of all nodes associated with either
the injector or producer is one.

The flow capacity over storage capacity diagram is
derived based on TOF solutions (Fig. 23a). The reference
solutions are for a homogeneous model and displacement,
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Fig. 21 Drainage volume (a) and pressure drop and pressure derivative (b) over propagation time for modified well locations in the heterogeneous
model

respectively. The homogeneous model is of the same geom-
etry as the heterogeneous model but with homogeneous
permeability 150 mD. Homogeneous displacement refers to
1D homogeneous piston-like displacement with zero resid-
ual oil saturation such that flow capacity is always equal
to storage capacity [58, 75]. The dynamic Lorenz coeffi-
cient of the heterogeneous model is approximately 0.22.
The reference values of homogeneous model and displace-

ment are 0.16 and 0, respectively. Another derived quantity
based on TOF is sweep efficiency versus dimensionless
time (Fig. 23b). Water breakthrough is generally at dimen-
sionless time equal to 1 when a homogeneous piston-like
displacement has 100% sweep efficiency [45]. The sweep
efficiency of the heterogeneous model at the time of water
breakthrough is around 80%. This is consistent with the for-
ward TOF, which is higher at some nodes near the corners

Fig. 22 Pressure (a) and forward time-of-flight (b) solution on the unstructured tetrahedral mesh for flow diagnostics. Forward time-of-flight is
the travel time from the injector to each position in the model

Comput Geosci (2020) 24:641–661 655



Fig. 23 Plots of flow capacity over storage capacity (a) and sweep
efficiency over dimensionless time (b) for the heterogeneous surface-
based reservoir model. The reference solutions are for a homogeneous

model and displacement, respectively. The homogeneous model is of
the same geometry as the heterogeneous model but with homogeneous
properties

of the model than the TOF at the producer (Fig. 22b). The
sweep efficiencies for homogeneous model and homoge-
neous displacement are 85% and 100%, respectively. Water

Fig. 24 Pressure solution of the heterogeneous surface-based model
with modified well locations (compare with Fig. 22a)

breakthrough in the heterogeneous model occurs approxi-
mately three times faster before 100% recovery is reached
(Fig. 23b).

Next, the two wells are moved to the centres of
opposite boundary surfaces (Fig. 24). This is a new
scenario to see how different well placements for the
same geology impact flow. In RRM, wells can be
moved in the model, but new meshes need to be
generated to adapt to new well locations. As expected,
the pressure distribution changes accordingly but is still
smooth. The flow capacity over storage capacity curves
for heterogeneous and homogeneous models (Fig. 25a)
almost overlap with each other, influenced mainly by
reservoir geometry and well locations. The dynamic
Lorenz coefficients for heterogeneous and homogeneous
models are now 0.255 and 0.243, respectively. The sweep
efficiencies at water breakthrough for the heterogeneous
and homogeneous models are both around 70% (Fig. 25b).
Comparing Figs. 23 and 25 shows that generally the sweep
efficiency decreases with higher heterogeneity quantified
by the dynamic Lorenz coefficient. The well locations in
Fig. 22a are preferred if higher sweep efficiency is desirable
for production with water flood.

The total time needed for mesh generation, flow diagnos-
tics, and numerical well testing in the demonstrated example
is less than a minute on a normal desktop computer. We
can hence quickly generate multiple geological scenarios to
test how flow is impacted by geological heterogeneity and
begin to compare, contrast, and rank reservoir models. All
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Fig. 25 Plots of flow capacity over storage capacity (a) and sweep
efficiency over dimensionless time (b) for the heterogeneous surface-
based reservoir model with modified well locations. The reference

solutions are for a homogeneous model and displacement, respectively.
The homogeneous model is of the same geometry as the heterogeneous
model but with homogeneous properties

steps of flow diagnostics and numerical well testing are fully
integrated and automatically executed.

5 Conclusions

An edge-based fast marching method with path correc-
tion (EFMMC) has been developed for approximating the
diffusive TOF of pressure front propagation efficiently on
unstructured tetrahedral meshes. In addition, a tracing algo-
rithm for flow diagnostics has been reviewed. Based on
these algorithms, we have implemented flow diagnostics
and numerical well testing (NWT) on unstructured tetrahe-
dral meshes for rapid reservoir modelling (RRM). It should
be noted that these algorithms are not bound to the RRM
workflow. They can be applied to other models involving
unstructured tetrahedral meshes. The total computational
cost of flow diagnostics and NWT and is less than seven
minutes for models with one million nodes on a standard
desktop PC. This paper demonstrates that an implementa-
tion of the workflow consisting of integrated sketch-based
interface modelling, unstructured mesh generation, flow
diagnostics, and numerical well testing is possible. The
algorithms developed in this paper can be used for numer-
ical well testing in reservoir models involving unstructured
meshes.
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Appendix: A review of fast marching
methods for structured and unstructured
grids

The fast marching method (FMM) is an efficient non-
iterative algorithm developed by [55] to solve the boundary
value problems of the Eikonal equation for monotonically
advancing fronts. Here, monotonicity means that the front or
interface can only expand or shrink. A number of practical
applications have been modelled based on the principles of
FMM. For example, [16] presented a characteristic FMM
for wave propagation in a moving medium. Elias et al.
[21] developed a FMM based on the finite element method
for computing the distance field in computer graphics.
Sermesant et al. [54] presented an anisotropic multi-front
FMM for real-time simulation of cardiac electrophysiology.
Sharifi et al. [59] used FMM to approximate the propagation
time of pressure fronts of flows in porous media for
reservoir characterisation. Zhang et al. [73] applied FMM
to estimate drainage volumes and pressure depletion for
numerical well testing in shale gas reservoirs. Zhang et al.
[70] presented a scalable massively parallel implementation
of FMM for large industrial models.

The FMM as presented in [55] is based on solving the
Eikonal equation using upwind finite difference approxi-
mation. The method is efficient, consistent, and monotone
on Cartesian grids with a computational complexity of
O(N logN) where N is the number of unknowns [35]. On
unstructured meshes where the connectivity between ele-
ments are often not aligned with the main coordinate axes,
the gradient in the Eikonal equation could be discretised
based on directional derivatives along edges [56]. However,
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this approach is not monotone. Thus, a causality condi-
tion is introduced to ensure that only monotone results are
obtained. The causality condition requires that the computed
propagation time on an unknown node must be higher than
the propagation time on known nodes. But, it is possible
that no neighbouring element satisfies the causality condi-
tion for a node in an unstructured mesh containing skewed
elements. Sethian and Vladimirsky [56] suggest to solve this
problem by splitting the obtuse angles and constructing vir-
tual supportive triangles. The extension of this approach to
3D unstructured tetrahedral meshes, where skewed elements
are more common, is rather cumbersome. An alternative
solution can be defined for the Eikonal equation using the
finite element method [21], although similar difficulties
arise when fulfilling the causality condition.

Fast marchingmethods on Cartesian grids

FMM solves Eq. 12 numerically subject to boundary
condition

t = g(x) , x ∈ � (30)

where � is a subset of �. Both F and g are given, and
the computation starts from �. Here we let g(x) = 0
similarly as in [55]. For isotropic propagation speeds, the
finite difference discretisation for Eq. 12 on 3D Cartesian
grids is

(
tijk − t∗x

�x

)2

+
(

tijk − t∗y

�y

)2

+
(

tijk − t∗z

�z

)2

= 1

f 2
,

(31)

where tijk is the propagation arrival time of the cell with
index (i, j, k). t∗x , t∗y , and t∗z are the upwind values along
x, y, and z axes, respectively. For an anisotropic propagation
speed tensor, Eq. 13 is discretised as [73]

(
Fx · tijk − t∗x

�x

)2

+
(

Fy · tijk − t∗y

�y

)2

+
(

Fz · tijk − t∗z

�z

)2

= 1 ,

(32)

where Fx , Fy , and Fz are the propagation speeds at cell
(i, j, k) along x, y, and z directions, respectively. If the
speed is isotropic (Fx = Fy = Fz = f ), Eq. 32 is equal to
Eq. 31. The steps of FMM for computing the propagation
time on a Cartesian grid are summarised as follows [55]:

1. Label all boundary cells as frozen. These cells have
t = 0.

2. Compute t for all cells that have at least one
frozen neighbour and label them as candidate. All
candidate cells form the narrow band [55]. Because of
monotonicity, a cell can only have at most one frozen

neighbour along a direction which is also the upwind
cell. If there is no neighbour along a direction, then the
corresponding term in Eq. 31 or 32 is simply neglected.

3. Find the cell with smallest t in the narrow band, mark it
frozen, and remove it from narrow band.

4. Solve t for all neighbours of the recently frozen cell and
move them to the narrow band. If a neighbour is already
in the narrow band, it is recomputed taking the recently
frozen cell into account.

5. If the narrow band is not empty, go to step 3. The loop
continues until all cells become frozen.

Difficulty of applying fast marchingmethods
on unstructured grids

In unstructured finite element meshes, the connectivity
between adjacent elements is not necessarily aligned with
the coordinate axes. Elemental edges are addressed as edges
for conciseness. We could use a linear combination of
directional derivatives along edges to compute the gradient
in Eq. 12 in an element. The propagation time and speed
are defined on nodes and elements, respectively [56]. Let
P denote the matrix storing in rows the vectors along
edges and td denote the vector of directional derivatives of
propagation time along edges in an element. We have

P∇t = td . (33)

Inserting Eq. 33 into Eq. 13 leads to

tTd (P −1)T FP −1td = 1 . (34)

The dimension of td is two for 2D triangular meshes and
three for 3D tetrahedral meshes. The directional derivatives
are set to be piecewise constant on the edges. Consequently,
Eq. 34 will always result in a quadratic equation for t

regardless of the number of dimensions.
The problem with this method is the lack of monotonic-

ity. Suppose we have a triangle ijm with the propagation
time known at nodes i and j and unknown at node m. We
could compute tm using Eq. 34 and adopt the larger propaga-
tion time for tm. However, tm might be smaller than either ti
or tj , which is against the principle of monotonicity. There-
fore, [56] introduced a causality condition requiring that tm
can only be solved in adjacent triangles where both ti and
tj are known and smaller than the computed tm. However,
the causality condition might not hold in any neighbouring
triangles of a node in a mesh containing obtuse angles. As
a result, FMM may terminate much earlier before sweeping
the entire domain. Sethian and Vladimirsky [56] proposed
a possible solution by splitting obtuse angles and building
extra supportive triangles. However, the extension to 3D
tetrahedral meshes is difficult.

An alternative finite element discretisation of the Eikonal
equation on unstructured meshes is presented in [21].
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Here, ∇t is discretised as ∇Niti where Ni is a linear
basis function. However, the same problem of fulfilling the
causality condition arises. Thus, they modified the FMM
algorithm and frozen a node as soon as it is computed as a
candidate without building a narrow band, but this is against
the principle of FMM and will produce inaccurate results in
heterogeneous models.

Further, the causality condition may not be satisfied
even on a Cartesian grid when the propagation speed is
anisotropic with main axes not aligned with the connectivity
between cells. Sethian and Vladimirsky [57] presented an
enlarged neighbourhood method to include more cells for
computing t when the causality condition fails. Konukoglu
et al. [36] includes a recursive correction step in the FMM
main loop where the neighbours of an updated node are
recomputed such that the causality condition could be
satisfied. However, it is not clear whether these methods can
solve the monotonicity problem in unstructured tetrahedral
meshes.
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