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Abstract 

 
 
The area of illustrative visualization is concerned with developing methods to enhance the depiction of 
scientific data based on principles founded in traditional illustration. The illustration community has century-
long experience in adapting their techniques to human perceptual needs in order to generate an effective 
depiction which conveys the desired message. Thus, their methods can provide us with important insights 
into visualization problems. 
 
In this tutorial, the concepts in illustrative visualization are reviewed. An important aspect here is interaction: 
while traditional illustrations are commonly only presented as static images, computer-assisted visualization 
enables interactive exploration and manipulation of complex scientific data. Only by coupling illustrative 
visualization with effective interaction techniques its full potential can be exploited. 
 
The tutorial starts with a detailed description of the entire traditional medical illustration production pipeline 
(techniques, tools, etc.) describing limitations and specific features to be researched and developed for more 
advanced tools. We then proceed discussing the importance and power of abstraction and interface issues 
in illustrative visualization. We present different ways of achieving abstraction in interactive settings 
discussing flexible representations for representing artistic visual styles. Next, we introduce the importance 
of intuitive interaction for illustrative visualization describing sketch-based approaches as an intuitive way of 
manipulating and exploring volumetric datasets. In the last part of the tutorial we present techniques for 
deforming volumes in various ways inspired by traditional illustration techniques such as the depiction of 
surgical procedures. We also describe how to deform and render in an illustrative fashion using by-example 
approaches. 
 
 
 

Session/Topics Speaker(s) 

 
Historical Perspective on Concepts & Techniques of  
Traditional Medical & Scientific Illustration 
 

Andrews 

 
Rooted in the Renaissance and the rediscovery of Classical works on science and medicine, traditional 
scientific and medical illustration has evolved greatly in the centuries since. This evolution has occurred in 
tandem with advances in scientific and medical knowledge and understanding, as well as with advances in 
communications theory and technology. From allegorical to documentary and from instructive to interpretive, 
the conceptual approaches employed by illustrators working in these fields have changed and adapted to 
meet the needs of their publics, and to take advantage of technological advances. This section of the tutorial 
provides a brief, insightful survey of historic visualization and illustration concepts, contextual settings, and 
relevant media techniques. 
 

 
Interactive Illustrative Rendering with Style 
 

Ebert, Bruckner 

 
First part will focus on the determination of the appropriate representation of material for the user, their 
experience, and their task. The creation of effective visual representations needs to be based on the 
intended user and their intended use of the system. Description of approaches for creating not only 
illustrative representations that provide the appropriate level of representation and highlight the relevant 
material for the user’s task, but also on the design of the system interface for making the system 
understandable to the user. 
 
The second part will focus on visual style representations for illustrative visualization. As different rendering 
styles are an effective means for accentuating features and directing the viewer’s attention, an interactive 
illustrative visualization system needs to provide an easy-to-use yet powerful interface for changing these 
styles. The lecture will review existing approaches for stylized rendering and discuss practical considerations 
in the choice of an appropriate representation for visual styles. Additionally, a high-level approach for 
mapping volumetric attributes to different illustrative styles will be discussed.  
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Intuitive and Ergonomic Interaction in Illustrative Visualization 
 

Viola, Sousa 

 
Illustrative visualization primarily deals with easy-to-understand display of complex underlying data, 
however, to enable exploration and direct contact with the data, easy-to-handle interaction is equally 
important as the visual part. Ergonomic interaction is demonstrated in user-centric mechanisms for data 
presentation such as guided navigation through classified volumetric data or story-telling for volume 
visualization. Besides approaches aiming at presentation, we describe how interactive illustrative 
visualization is being embedded into novel medical intervention procedures.  
 
We will also review the state-of-the-art of sketch-based interfaces and modeling (SBIM) for scientific 
visualization, including different aspects and inspiration factors brought from traditional medical/scientific 
illustration principles, methods and practices We will describe unique techniques and problems, including 
presentation of systems, algorithms and implementation techniques focusing on interactive SBIM for 
illustrative volume graphics. 
 
 
Example-based illustrative Rendering and Deformation 
 

Correa, Chen 

 
First part focuses on a methodology for generating visualizations that depict deformation, in order to 
enhance the view of hidden features or to depict a complex procedure, such as a surgical operation. To 
obtain high-quality images, a number of considerations need to be taken into account, such as sampling, 
lighting and composition of volumes undergoing deformation. The lecture also presents an architectural view 
of the system and algorithmic details for its implementation using contemporary graphical processing units 
(GPUs). In addition, selective deformation can be obtained with the use of user-defined masks and 
segmentation information. This lecture also describes how to incorporate these aspects into the illustrative 
deformation pipeline. 
 
Second part will focus on how to learn illustration styles from traditional illustrations or measured datasets, 
including the color, texture, structure and shape styles. We will describe how to modify and decorate a 2D 
illustration by simulating the shape styles of another 2D example using differential based mesh manipulation 
techniques. Our second scheme aims to change a 3D model template with shape styles from 2D examples. 
In addition, we will present an efficient shape-aware technique to abstract the boundaries of 3D models for 
achieving smooth boundary effects. Finally, we will introduce how to learn and re-use other styles such as 
colors, textures under an example-based volume illustration framework. The driving techniques for these 
goals are constrained texture synthesis and differential coordinates based shape manipulation. 
 

 
 

Image credits 

 
 

 

© 1999 - 2006 Fairman Studios, LLC. All Rights Reserved. 

 

© Nikolai Svakhine, Yun Jang, David S. Ebert and Kelly Gaither, “Illustration and Photography 
Inspired Visualization of Flows and Volumes”, Proceedings of IEEE Visualization Conference 
2005, Minneapolis, October 23 - 25, 2005 

 

© Copyright M. Burns et al. Feature Emphasis and Contextual Cutaways for  
Multimodal Medical Visualization. In Proc. of EUROVIS 2007. Used  
by Permission 

 

© Copyright VolumeStudio, University of Calgary, 2007, Used by Permission 
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© Modeling Plant Structures Using Concept Sketches Anastacio,F., Sousa, M.C., Samavati, F., 
Jorge, J. 4th International Symposium on Non Photorealistic Animation and Rendering (NPAR 
'06) 

 

© S. Bruckner, M. E. Gröller. Exploded Views for Volume Data. IEEE Transactions on 
Visualization and Computer Graphics, 12(5):1077-1084, 2006. 

 

© Illustrative Deformation for Data Exploration. Carlos Correa, Deborah Silver and Min Chen. 
IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization / 
Information Visualization 2007), vol. 13, no. 6, Nov.-Dec. 2007. 

 

© Shape-aware Volume Illustration.  Wei Chen, Aidong Lu, David S.Ebert.  
Computer Graphics Forum (Proceedings of Eurographics 2007). 

 

© Bill Andrews. All Rights Reserved. 
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Historical Perspective on Concepts & Techniques of Traditional Medical & Scientific Illustration 

 
Bill Andrews, Medical College of Georgia 

 
bandrews@mcg.edu 
www.mcg.edu/medart/ 

 
Just as fine art is a reflection of the culture and times in which it was created, images of science and 
medicine reflect the contextual environment of their creators. This presentation provides an insightful survey 
of historic visualization and illustration concepts, contextual settings, and relevant media techniques. 
 
Pre-Renaissance Era 
 
The Middle ages or Medieval period extends from the fall of the Roman Empire until the advent of the 
Renaissance, from roughly 400 AD to 1350 AD. In the later half of this period is marked by the rediscovery 
and interpretation of the knowledge and culture of Classical Greece and Rome. Philosophically, there is the 
ascension of Christianity and the expansion of Catholic doctrine, with an all-pervading faith in the divine 
order of heaven and earth through time without end. In contrast, the rediscovered scientific knowledge and 
technology encourage the birth of reason and empiricism. Infusions of technology and new ideas such as 
algebra, from the Middle East and Asia caused perturbations in the status quo and created new 
opportunities. Late in this period, arrival of the bubonic plague from the east shook the “natural order” of 
European civilization. While the Middle Ages are often portrayed as a period of dogmatic religious 
dominance and technological stagnation, this is not so. The stage was being set—nearly all the art, 
architecture, technology and philosophy that we celebrate about the Renaissance had its roots in the Middle 
Ages.  
 
In the beginning of this Pre-Renaissance era, communication technology was dominated by monastic 
scribes working on vellum, creating one document at a time. In the 1100’s, effective and efficient paper-
making technology arrived in Europe. It arrived almost contemporaneously with wood block printing. With 
these two innovations, knowledge became an affordable commodity. The church no longer had a monopoly 
on mass communication. However, preparation of the wood blocks was laborious (and unforgiving), and the 
blocks have a limited lifespan measured in 100s of copies. The grain of the wood and fineness of the carving 
instrument limited image resolution and could introduce artifacts to the image. 
 
Quintessential images from science and medicine from this period include those in the Margarita 
Philosophica by Gregor Reisch (1467-1525), a Carthusian monk from Freiburg, and the Fasciculus 
Medicinae by Johannes de Ketham, a German physician. While both these works were technically printed 
during the Renaissance, they feature images that are very much Pre-Renaissance. The dissected male 
figure from the Margarita (http://www.kcl.ac.uk/depsta/iss/library/speccoll/bomarch/bomapril06.html) 
dogmatically depicts Galenic anatomy. Galen of Pergamum was a second century Greek physician. 
Unfortunately, when his writings were rediscovered during the Middle Ages they were accepted as gospel—
including the incorrect anatomy. The Anatomy Lesson from the Fasciculus 
(http://www.nlm.nih.gov/exhibition/historicalanatomies/ketham_home.html) shows a typical early anatomical 
dissection—the physician reading Galen while a barber-surgeon does the actual cutting. This image 
captures the conflict between accepted knowledge (Galen’s writings) and empirical observation. 
 
The Renaissance 
 

For the purposes of this talk, the Renaissance begins in the middle 1300s and extends to the early 1600s. 
Italy is the epicenter of this Renaissance. Described as the rebirth of Classical Greek and Roman culture, it 
is built on the foundations set during the late Middle Ages. Empiricism replaces dogma, reason gains 
ascendancy over faith, and secular powers vie with the church-dominated status quo. Original knowledge 
was pursued via the study of hidden similarities and relationships between physical objects, as well as 
between physical objects and metaphysical beings (via allegory, parable and symbolism). During this period, 
those with the means began collecting items from the natural world and from other cultures, giving rise to 
curiosity cabinets (kunstkammers). 
 
In communications technology, the German printer Johannes Gensfleisch zur Laden zum Gutenberg (c. 
1400 – 1468) took the next great leap, with movable metal type 
(http://www.mainz.de/Gutenberg/museum.htm). His first printing project was a Bible (1439). Perhaps 
presaging the standard business model for most new communication technologies, he went bankrupt. 
Printing with engraved metal plates was also invented at this time, though its use would remain rare for a 
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very long time. Another new technology emerging from the Renaissance was oil paint. Advances in pigment 
chemistry become increasingly important for communications from this time forward. 
 
Quintessential science and medical imagery include De Humani Corporis Fabrica (1543) by Andreas 
Vesalius of Brussels (1514 – 1564) (http://vesalius.northwestern.edu/). The text is printed with movable type, 
with images printed from wood blocks. This book revolutionized anatomical and medical education. Vesalius 
did his own dissections; the illustrations were based on observation; the text and illustrations are integrated 
into a coherent whole; and it was mass produced (several hundred copies are still in existence). The 
frontispiece from the Fabrica provides an excellent counterpoint to The Anatomy Lesson from the Fasciclus. 
 
Other representative imagery includes Vier Bücher von Menschlicher Proportion (1528) by the German artist 
Albrecht Dürer (1471 – 1528). This posthumously published book depicts Dürer’s research into the 
morphometric proportions of the human form 
(http://www.nlm.nih.gov/exhibition/historicalanatomies/durer_home.html). As with Vesalius’ Fabrica, the 
Proportion was printed with a combination of movable metal type and wood block figures, but it also included 
some engraved metal plates. 
 
The Baroque 
 

The Baroque, sometimes called the Age of Reason, is an extension of the Renaissance and extends roughly 
from 1600 to 1700. In the sciences, it is noteworthy for the rise of ordering and classification as a source of 
discoveries (distinction vs. similitude). There is also a growing scientific rift between the focus on objective 
analysis by the rationalists and the subjective experience of the empiricists. Building on the concept of 
curiosity cabinets inaugurated in the Renaissance, there is a general proliferation of protomuseums, 
botanical gardens and menageries. Artistically, Baroque artists stressed emotion, variety, ornamentation and 
movement.  
 
During this period logarithms, calculus and the slide rule are created; however, it would be a few years 
before their influence in scientific and medical imagery would be noticeable.  
 
Precision instrumentation begins to make a real impact in science and medicine. Antony van Leeuwenhoek 
(1632 – 1723), the father of microscopy, was a lens grinder in Delft 
(http://www.ucmp.berkeley.edu/history/leeuwenhoek.html). Galileo Galilei (1564 – 1642), the father of 
modern science, envisioned a new cosmology through his telescope (http://www.galilean-library.org/). This 
period marks the advent of machine-aided vision.  
 
In communications, hi-tech meant engraving on copper plates. The use of metal printing plates meant that 
1,000s of copies featuring images with very fine detail could be printed. 
 
Quintessential images of science and medicine from the Baroque can be seen in the atlas Ontleding des 
Menschelyken Lichaams by the anatomist Govard Bidloo (1649-1713) from Amsterdam 
(http://www.nlm.nih.gov/exhibition/historicalanatomies/bidloo_home.html). The Allegorical Titlepage sums up 
the Baroque style nicely and is also a fine example of copperplate engraving. 
 
The Age of Enlightenment 
 
This period begins around 1650 and extends through the 1700s. It is an age of optimism, powered by an 
intellectual movement which advocated reason as the basis for authority. The movement sought to improve 
the human condition after centuries of unquestioned tradition, superstition and tyranny. The absolute 
authority of the nobility and the church declined. Logic and science became ascendant.  
 
Newton, Leibniz, Hooke, Lavoisier and others explored the principals and methods that laid the foundations 
for the coming Industrial Revolution. Experimentation begins to overtake pure empiricism. New heights of 
precision instrumentation are reached, propelling a desire to explore, measure and document everything. 
 
Bernhard Siegfried Albinus (1697-1770), a physician from Frankfurt, and his artist Jan Wandelaar (1690-
1759), from Leiden went to great lengths to create the “perfect” anatomy text They began with the search for 
the ideal specimen. Albinus posed the cadaver after successive layers of dissection. Then Wandelaar drew 
the cadaver using an anti-parallax contraption. They compared this work against numerous ancillary cadaver 
dissections to arrive at a final normative ideal. It is still a work of unparalleled accuracy and beauty. 
(http://www.nlm.nih.gov/exhibition/historicalanatomies/albinus_home.html).  
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In medicine there is a drive to define normal and to study the abnormal. Surgery, as a separate profession, 
emerges. The work of the Hunter brothers, William and John, of Scotland provide fine examples. Anatomist 
and Royal physician William Hunter (1718-1783) created the Anatomia Uteri Humani Gravidi Tabulis 
Illustrata, considered one of the most beautiful medical texts of all time 
(http://www.nlm.nih.gov/exhibition/historicalanatomies/hunterw_home.html). One of the reasons that the 
book is remarkable is that the dissected figures are reproduced at life size. John Hunter (1728 – 1793) 
received no formal education in medicine, but went on to be one of the greatest surgeons, anatomists and 
naturalists of his age. He also did experimental surgery, including transplantation 
(http://www.rcseng.ac.uk/museums/history/johnhunter.html). 
 
New printing methods are created—the mezzotint process and the aquatint process. Both allow the printing 
of a full tonal range of shades, from black to white. 
 
The Industrial Age 
 
The Industrial Age extends from roughly 1750 to 1900, though some would argue that it has not yet ended. 
This age is marked by the triumph of mechanization and industry over nature and manpower. The age of 
scientific and medical specialization begins. In medicine, the study of diseases and abnormalities comes into 
vogue. 
 
The publication of technical journals and periodicals by philosophical and scientific societies helped to 
spread technical innovations. The invention of lithography, and later the powered printing press, facilitated 
the dissemination of all this new information, as did the advent of the steam-powered railway. In the early 
1800s, advances in chemistry led to photography. The age of mechanochemical vision had dawned. By the 
later half of the 1800s, telegraphy makes distributed network communications possible over long distance. 
 
During the American Civil War, Mathew Brady captured images of field surgeries 
(http://www.sonofthesouth.net/leefoundation/amputation.htm). Neurologist Guillaume Benjamin Amand 
Duchenne (1806-1875) from Boulogne sur Mer, France, produced two major treatises entitled De 
l'Électrisation localisée (1855) and Physiologie des Mouvements (1867) 
(http://www.whonamedit.com/doctor.cfm/950.html). His methods were a bit unorthodox by today’s 
standards—he applied electric currents to the muscles causing them to contract, and then photographed 
them. Between 1831 and 1854 physician Jean Baptiste Marc Bourgery (1797–1849) and artist illustrator 
Nicolas Henri Jacob (1782–1871) published Traité Complet de l'Anatomie de l'Homme Comprenant la 
Medecine Operatoire in eight volumes. This remarkable book includes color printing using the lithograph 
method. 
 
The Modern Era 
 
Also known as the Second Industrial Age, the Modern Ear extends from about 1850 to the end of World War 
II. This era is marked by the ascendancy of chemistry, assembly line manufacturing, electric power, the 
automobile, the computer, telecommunications and powered flight.  
 
The Impressionists capitalize on advances in chemistry. In photography, the halftone screen process 
enables tonal printing. Photomicrography comes into being, capturing the very small. In the early 1900s, the 
safety bulb makes flash photography practical and safe. In printing, the rotogravure press is invented, 
allowing rapid color printing. Though still expensive to produce, more and more books are printed in color. In 
the early 1900s, wireless broadcast radio communications are a commercial success, and television is 
under research. 
 
The advent of safe and effective anesthetic agents opens new frontiers in surgery. Medical artists no longer 
document anatomy, they now describe novel operative techniques.  
 
The Post-Modern Era 
 
Beginning at the close of World War II, this era ends with Disco in 1970s. The Post-Modern Ear is noted by 
the advent of nuclear power and advances in particle physics, rocketry, television, home appliances, power 
tools, plastics, antibiotics, the pill, and extrasensory visualization. With foundations established by 
disillusionment arising from horrors of World War II, postmodernism is a cultural movement lacking a clear 
organizing principle. It embodies complexity, contradiction, ambiguity, diversity, and interconnectedness.  
 
Advances in stroboscopic photography, extended spectrum films, electron microscopy and so on open up 
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the field of scientific visualization beyond the limits of human vision. The stunning images by Lennart Nilsson 
are exemplary (http://www.lennartnilsson.com/human_body.html). Broadcast television makes it possible to 
share moving pictures with an entire population simultaneously.  
 
In medicine, there is a new focus at the cellular function, physiological processes and biochemistry. The 
work by physician-artist Frank H. Netter typifies this focus (http://www.netterimages.com/artist/netter.htm). 
Netter was known for his interpretive approach to anatomy and physiology, as opposed to a documentary 
approach, in order to serve his didactic purpose. 
 
The Computer Age 
 
For the purposes of this presentation, the computer age begins with the advent of the desk-top computer in 
the 1970s. It continues today. I’m no expert on computers or their impact on society, but I am amused by 
them and occasionally find them useful. In my career, I’ve gone from the “fun” of creating daisy-wheel 
images with the letters X and O on fan-fold paper to being able to model complex proteins in 3D and change 
them over time. Thirty years ago, medical illustrators were low-tech, low-cost image specialists—all we 
needed was paper, pen and ink. Now, in order to create interactive 3D animations, we consume more raw 
computing power than most people on the academic medical campus. 
 
The accompanying sample by XVIVO and Harvard Medical School depicts the current approach to didactic 
medical imagery (http://multimedia.mcb.harvard.edu/media.html). Note the influences from the entertainment 
industry. 
 
The Information Age 
 
For the purposes of this presentation, the Information Age begins with the advent of the Internet, and is 
ongoing. It pervades all aspects of our culture and economy. It can be characterized by an obsessive desire 
to collect, organize, process, distribute, massage, interpret, repurpose, and perhaps use massive amounts 
of data instantly, interactively, anywhere.  
 
In medicine and science, we can now take a string of numbers and turn it into an image, a visualization of 
some theoretical construct. As an example, the ARGO Genome Browser from the Broad Institute and MIT 
will serve (http://www.broad.mit.edu/annotation/argo/). 
 
In essence, imagery has been freed from the need to portray reality and is now limited only by our 
conceptual abilities and communication needs. 
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David S. Ebert
Electrical  & Computer Engineering
Purdue University
ebertd@purdue.edu

Tailoring Interfaces and Levels of 
Representation in Illustrative 
Visualization and Rendering

Approach to Effective Visual 
Representations (ala Bertin)

Understand the problem or 
question

Determine data needed for 
solution and its 
characteristics

Determine effective visual 
representation
• Utilize perception, design, 

illustration, and advanced 
rendering techniques

• Interactivity, accuracy, and 
reproducibility are vital

Illustrative Visualization: 
Overview
Abstract away 
unimportant details

Illustrative Visualization: 
Overview
Utilize attentive focus to 
emphasize data

Illustrative Visualization: 
Overview
Utilize illustration 
principles and 
techniques

Illustrative Visualization 
Approach
What to show?
• Incorporate principles from technical illustration

How to show it?
• Develop a toolbox of illustrative techniques

How to implement it?
• Adapt volume rendering pipeline to volume illustration

How to create an appropriate interface
• Interactive design with user participation
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Toolbox of Techniques
Feature enhancement
• Boundary enhancement

• Silhouette enhancement

Depth and orientation techniques
• Aerial perspective

• Intensity depth cueing

• Oriented fading

• Halos

• Tone shading

Approaches to Interfaces
Example-based interfaces
Multi-level interfaces
Interfaces and adaptation to task
Interfaces and adaptation to devices

Example-BasedVolume
Illustration

+ =

Multiple Styles - Iron Protein

Standard                           Stippling                    Carbon Dust                           Bubbles

Strokes                         Pointillism                     Watercolor                             Crayon

Example-based Illustrative 
Visualization

Simulate style of professional illustrators & 
simplify user interaction

Color Transfer

Current approaches
• “Color transfer between images”, E. Reinhard et al. 2001

• “Transferring color to greyscale images”, W. Welse et al. 2002

Automatic transferring process
Two assumptions:
• Simpler representation & similar object distributions

Example            Source            1-1                2-2



3

Example-based Rendering

For each object – one set of textured cubes

Segmented datasets: object ID – one cube set

Un-segmented datasets: opacity – cube sets 

Only two user interactions: sample & illustration 
examples

Sampling                               Color Transfer           Synthesis

Example-based Rendering -
Hand

Gross Anatomy in the practice of medicine. Slaby, F.J., McCune, S.K., and 
Summers, R.W. 1994. Lea and Febiger.

Example-based Rendering -
Abdomen

Sobotta Atlas of human anatomy. Staubesand, J. 1990. Urban and Schwarzenberg Baltimore-
Munich.

Goal of Interactive Medical 
Illustrative Visualization Process

Hierarchical Transfer Functions
Usually transfer functions control  (color, opacity)
They can also be used to control 
parameters/contribution of the effects
Design multiple transfer functions to control:
• Sketch

• Illumination

• etc.

This allows applying different combinations of 
effects to different materials

Example
Sketch applied to ‘skin’ material
Illumination applied to ‘bone’ material
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Next Step: Zones
Zones are regions of the volume space
Zones can have different applied styles
Zones can be either ellipsoids or rectangles
This allows large set of possible effects

Zones With Different Styles

Common Medical Illustration 
Components
Organ/tissue boundary emphasis
• Strong use of silhouetting techniques

Variation of level of representation
• Focus + context techniques

Common representation vocabulary
• Colors

• Styles

IVIS Animation

Medical Motifs
Motifs are settings upon which illustrator 
can quickly build styles specification
Example: 
• Anatomical illustration

• Surgical simulation

• Different levels of expertise for intended users

Medical illustrations

Foot bone structure 
from anatomy 
textbook

Same structure shown 
by IVIS with 
Visible Human foot 
dataset
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Anatomical Illustration

Images by Nik Svakhine

Surgical Training

Images by Nikolai Svakhine

Levels of Expertise
Novice 
• Frequently overwhelmed by the quantity and complexity of data 

presented during training 

• Must learn to develop their attentive focus and unconsciously 
orient the structures in the data for reference

Expert 
• Has necessary experience to subjugate data details that 

provide context 

• Can quickly focus on the specific portion of the data and 
relevant structures

Levels of Representation

Schematic/simplistic 
representation of the 
cochlea and 
semicircular canals

Motifs are designed with help/feedback from professional 
medical illustrator 

A more complex 
representation of the 
same area, with more 
detail on surrounding 
bone

Almost ‘realistic’
representation

Temporal bone microCT

Levels of Representation

Even without segmentation, structures 
are visible
Different levels of enhancement

Temporal bone microCT

Surgical Training

Images by Nik Svakhine
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Illustrative Rendering and 
Visualization on Mobile Devices
Challenges:
•Limited battery, network, memory
•Limited screen resolution
•Limited graphics APIs

Adaptation to Mobile 
Applications
Other constraints
• Often time-critical environments

• Simple interfaces and interaction key

• Intuitive design important

• Abstraction to key components for task critical

Example Applications
Maintenance and repair of aircraft
Emergency response
• Increased situational awareness

• In-field investigation

Illustrative Visualization on 
PDAs - Results

Images by 
Jingshu Huang

More Illustrative PDA 
Visualization

Images by Jingshu Huang

Utility of Volume Illustration
Enhancing presentation
• Teaching

• Explaining

• Convincing

Reinforcing unreality
Emphasizing important features
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Conclusions
Volume illustration is an effective, powerful 
tool !
• Effective enhancement / extraction of information

• Perception research

• Art / illustration techniques

• Interactive

Conclusions
Visualization is most powerful 
when combined with
• Effective enhancement / extraction of information
• Perception research
• Advanced illumination and shading
• Art / illustration techniques
• Improved interaction
• A larger solution
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Interactive Illustrative Rendering 
with Style

Stefan Bruckner

Institute of Computer Graphics and Algorithms

Vienna University of Technology

An illustration is a picture with 
a communicative intent
Conveys complex structures 
or procedures in an easily 
understandable way
Illustrations use abstraction to 
prevent visual overload
Abstraction allows the viewer 
to focus on essential aspects 
without losing context

Medical Illustration Source Book
http://www.medillsb.com 1

Illustrations

Stefan Bruckner 2

Direct Volume Illustration

Detailed volume data is readily available 
(medicine, biology, etc.)
Illustrator’s research process is significantly 
shortened
Possibility to easily explore different stylistic 
choices
Customized illustrations depicting particular 
pathologies
Static illustrations, animations, interactive 
illustrations

Stefan Bruckner 3

Abstraction (1)

Fundamental for creating an expressive 
illustration
Introduces a distortion between visualization 
and underlying model
Different degrees of abstraction based on the 
intent of the illustration
Task of an illustrator: choose and apply 
abstraction techniques

Stefan Bruckner 4

Abstraction (2)

High-level abstraction: deals with what should
be visible and recognizable

Low-level abstraction: concerned with how
different objects are presented

Style Representations

A good representation for visual styles has to 
fulfill certain requirements

Flexibility – ability to represent many different 
rendering styles
Compactness – simple and intuitive 
representation
Transferability – easy extraction from 
existing artwork
Efficiency – little overhead during rendering 
to allow interactivity
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Conventional Approach

Transfer function augmented by various 
additional parameters

Light directions and colors, shininess, tone 
shading parameters, silhouette color and 
thickness, …

Complex and potentially costly at runtime, 
particularly if data-dependent
Parameters are difficult to obtain, much fine-
tuning required
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Lighting Maps (1) [Bruckner and Gröller 2005]

Simple solution for various styles with 
constant costs at runtime
Two-dimensional lighting map which takes two 
dot products (N.L, N.H) as arguments
Defines lighting contribution of a sample in …

Object color (i.e. “diffuse” for Phong shading)
Light color (i.e. “specular” for Phong shading)
Opacity
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Lighting Maps (2) [Bruckner and Gröller 2005]

Lighting maps and their effects
Phong

shading
contour

enhancement
cartoon
shading

metal
shading

Lighting Maps (3) [Bruckner and Gröller 2005]

Simple representation which allows shading at 
constant costs
Limited flexibility as color effects are not 
included in the map
Still requires additional parameters (e.g., light 
position and color)
Somewhat unintuitive for the user, not easily 
editable
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Lit Sphere Maps (1) [Sloan et al. 2001]

Use an image of a sphere under orthographic 
projection to shade another object
Like environment mapping, but eye-space 
normal is used instead of reflection vector
Light sources appear to be fixed to the 
camera
Flexible image-based illumination, captures 
many different rendering styles

Stefan Bruckner 10

Lit Sphere Maps (2) [Sloan et al. 2001]

Use a sphere map indexed by the eye-space 
normal to determine the color of a point

Stefan Bruckner 1111

Lit Sphere Maps (3) [Sloan et al. 2001]

Easy to obtain – lighting studies are frequently 
performed using spheres
Sloan et al. describe simple extraction 
process from existing works of art
Intuitive representation, can be directly 
displayed to the user as a preview
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Lighting Transfer Functions [Lum and Ma 2004]

Data-driven shading – illumination settings 
vary based on the data value
Transfer function stores shading parameters 
in addition to colors and opacities

Stefan Bruckner 13StttefaSttee an Bruucknerc e 13

Style Transfer Functions (1) [Bruckner and Gröller 2007]

A style representation allows us to shade one 
object in a given style
For volume data, we rarely have discrete 
objects
We need a continuous parameterization of 
style space
A style transfer function maps volumetric 
attributes to visual styles
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Style Transfer Functions (2) [Bruckner and Gröller 2007]

0 1



Style Transfer Functions (3) [Bruckner and Gröller 2007]

Use lit sphere maps to enable data-dependent 
illustrative shading for volume rendering
One lit sphere maps represents one specific 
rendering style
Transfer function is defined over styles 
instead of colors
Combines the power of data-dependent 
lighting with the flexibility of lit sphere maps
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Style Transfer Functions (4) [Bruckner and Gröller 2007]

Style Transfer Functions (5) [Bruckner and Gröller 2007]
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Style Transfer Functions (6) [Bruckner and Gröller 2007]

Style transfer functions allow for a flexible 
combination of different visual styles
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Style Contours (1)

Contours are a frequent stylistic element in 
illustrations
Contour appearance should be derived from lit 
sphere map
Apparent contour thickness varies based on 
curvature
Solution by [Kindlmann et al. 2003]: use 
normal curvature along the view direction to 
modulate contour threshold

Stefan Bruckner 20

Style Contours (2)

Kindlmann‘s approach requires expensive 
reconstruction of 2nd order derivatives
Simple approximation: angle between the 
gradient direction at two subsequent sample 
locations along a ray divided by step size

Stefan Bruckner 21

Style Contours (3)

Instead of simple threshold, push lit sphere 
lookup coordinates outwards along the radius 
based on fuzzy “contourness” criterion

Stefan Bruckner 22
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Style Contours (4)
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normal contours thickness-controlled contours curvature image
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Style Contours (5)
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Semantic Layers (1) [Rautek et al. 2007]

Specifying a mapping for many different attributes is 
difficult

if principal curvature is negative
then contour style is blue
if principal curvature is negative and density is high
then contour style is blue
if principal curvature is negative and density is high
and gradient magnitude is high
then contour style is blue
if (principal curvature is negative and density is high
and gradient magnitude is high) or …
then contour style is blue
…

Peter Rautek 26

Semantic Layers (2) [Rautek et al. 2007]

contour style

transparent black
subtle black

dark red

red

density:
low – … – high

curvature:
negative – zero – positive

etc.

rules:  if attribute a1 is v   …  then style s1 is va1 s1

volumetric attributes illustrative styles

Use semantic rules to specify mapping from 
multiple volumetric attributes to multiple styles

Semantic Layers (3) [Rautek et al. 2007]

Application semantics and semantics for 
visual styles are separated
Membership functions are defined for 
volumetric attributes and visual styles
Linguistic rules are used to specify the 
mapping from attributes to styles
Fuzzy logic is employed for the evaluation of 
these rules

Stefan Bruckner 27

Peter Rautek 28

Semantic Layers (4) [Rautek et al. 2007]

attribute semantics
a …a

illustration semantics
s  …s

rule base

fuzzy
logic

1 n

evaluate attributes a …a   
per voxel

1 n
1 m

parameters for 
styles  s  …s

1 m
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Membership Functions

if-part: semantics for volume attributes

then-part: semantics for visual appearance

contour style

transparent black red

attribute

semantic
value

curvature

positive
close

to zeronegative

membership

membership

Peter Rautek 30

Semantic Rules

if (principal curvature is negative and density is high and
gradient magnitude is high) or distance to user focus is low

then contour style is red

positive
close

to zeronegative

principal curvature

contour style
transparent black red

Peter Rautek 31

Layered Styles

contour style

highlight style

background style

Apply styles in layers on top of each other, 
similar to the way illustrators work
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For each style, all modifying rules are 
evaluated, aggregated, and defuzzified

Fuzzy Logic Evaluation Demonstration

Stefan Bruckner 33
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Conclusions

A unified style representation extends the 
flexibility of illustrative shading
Style parameterization allows mapping of 
volumetric attributes to visual styles
Semantic layers provide an interface for 
specifying this mapping
Layered styles enable the mapping of 
independent variables

Thank you for 
your attention! 

Questions?

http://www.volumeshop.org
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Expressive Techniques in Visualization
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[Rautek et al. 2007]
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Focus+Context Visualization
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Ghosting Cutaways
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Example – Abdominal Structures
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Lung Nodules Visualization
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Visualization of MR Mammograms
[Coto et al. ’05]
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VesselGlyph – Angiography Visualization
[Straka et al. ’04]
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Neck Dissection Planning
[Krüger et al. ’05]
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Coupling Illustration and Interaction

Johann Remmelin; Catoptrum Microscopicum. 1613, Hardin Library
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Visualization Yes ! – Interaction No ?
Problems

Interaction is very time-consuming
Interaction prevents comparisons
Interaction hampers reporting

Challenges
Provide standardized views
Algorithms highly parameterized –
provide sensible default settings
Support automatic parameter tuning
Provide navigational aids

Examples
Automatic view point selection
Focus of attention
Automatic light placement (inconsistent 
lighting)
Automatic reporting
Dynamice poster - automatic storytelling

Quoting Master from NorVis07
Ivan Viola and Meister 20

Contextual Cutaways for MultiModal Vis

Multimodal Medical Visualization

[Burns et al. 2007]

[Burns et al. ’07]
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Sync Views of Co-Registered CT+US

CT Scan Data Ultrasound Data
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Fused Modalities Using Cut-Aways
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Illustrated Ultrasound
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LiveSync of 2D-3D Views for Exploration

Ivan Viola 25

[Kohlmann et al. 2007]

Guided Navigation

Input: known and classified volumetric data
High level request: show me object X
Output: guided navigation to object X
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Example - Stagbeetle

Focus view 1

Focus view 2Overview
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Example - Human Hand

Any Questions?
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Emphasis on the domain knowledge
Distance to important feature defines 
importance of other features
Shortest path on the bounding spheres
Zooming to focus
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Application-Driven View Selection
[Mühler et al. 2007]

Storytelling for Presentation

Story node
Story stops
Annotations

Story transitions
action groups

actions
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[Wohlfart and Hauser 2007]

Sample Story
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Interaction Patterns
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passive story playback

st. telling with interactive approval

semi-interactive story playback

total separation from story

Ivan Viola

Purpose of Illustrative Visualization
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Exploration

Selective 
Visualization
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Abstract

Interactive volume segmentation is an essential and important step in medical image processing. Conventional
interactive methods typically demand significant amounts of time and do not lend to a natural interaction scheme
with the 3D volume. In this paper we present a sketch-based interface for seeded region growing volume segmen-
tation. In our approach, the user freely sketches regions of interest (ROI) directly over the 3D volume. Parts of the
volume outside the ROIs are then automatically cut out in real-time. The user repeats this process as many times
as necessary until he/she decides to specify the seed point 3D location directly at the ROI. To prevent unexpected
segmentations, the region growing is restricted to the specified ROI. Our sketch-based system utilizes GPU pro-
gramming to achieve real-time processing for both rendering and volumetric cutting independent from the size
and shape of the sketched strokes.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Image Processing and Computer Vision]: Seg-
mentation, partitioning

1. Introduction

Medical imaging systems, such as computerized tomogra-
phy (CT), magnetic resonance imaging (MRI) and ultra-
sound, are becoming increasingly ubiquitous. Clinicians and
surgeons often use computer-based segmentation to identify
and analyze anatomical structures of interest in medical im-
age datasets. For example, neuroradiologists often segment
and examine the internal carotid artery to determine its de-
gree of stenosis in patients suffering from transient ischemic
attacks (TIAs - "mini" strokes). The degree of carotid steno-
sis is a critical factor to determine if TIA patients should
have surgery to open up this vital vessel. Other measure-
ments (such as the shape, topology, and cubic volume) could
also be obtained during the segmentation process [ONI05].
Therefore, volume segmentation is an essential and impor-
tant step in medical image processing.

Segmentation is often broken down into "edge based"
or "region based" methods. Each of these in turn may be

† http://www.ImagingInformatics.ca
‡ http://www.mrcentre.ca

"manual" or "computer assisted" (including completely au-
tomatic). Along the edge-based category, a typical man-
ual segmentation process requires a trained specialist to
draw contours around the region of interest (ROI) on cross-
sectional images. These contour lines are then linked and
reconstructed into a 3D representation for further analysis
(Figure 1, top). This procedure can become a challenging
task if the target is, for example, blood vessels in the brain,
which by nature involves complex shape and unpredicted
turning directions. Automatic methods currently focus on
low-level features such as edge detection and texture analy-
sis. An example of an edge detection algorithm exists in the
use of histograms by considering the relationship between
three quantities: the data value and its first and second di-
rectional derivatives along the gradient direction [KD98]. A
number of contributions and efforts were made in the re-
search direction for obtaining automatic segmentation re-
sults. However, the difficulty for a complete automatic ap-
proach is limited in one sense or another. Kirbas and Quek
[KQ03] pointed out that all such attempts for developing au-
tomatic segmentation algorithms are limited to some global
parameters or can fail with certain data.

The region growing [RK82] algorithm is one of the well-

c© The Eurographics Association 2006.
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Figure 2: Our sketch-based volume segmentation method: user sketches a ROI directly over the data (a), the ROI is extruded
(b), volume outside is cut out and user plants the seed point (c), region grows (d) and segments volume portions within the
extruded ROI (e).

Figure 1: Conventional segmentation methods. Top row:
edge-based method. Bottom row: region-based method.

known region-based segmentation methods that is simple
to compute and applicable to a wide range of data types.
Seeded region growing was first introduced by Rolf Adams
and Leanne Bischof [AB94]. Their algorithm requires the
planting of an initial seed point in the 3D volume dataset.
However, the challenge of specifying a 3D coordinate from
a 2D device, such as the mouse, is associated with providing
an intuitive interface in assisting with the mapping process.
Existing methods for specifying the seed point [SHN03] can
be outlined as follows: the user navigates from a stack of 2D
image slices; a desired slice is selected (i.e. equivalent to se-
lecting one of the axis as a first step); and then the user places
the seed point from the cross-sectional view of the data (Fig-
ure 1, bottom). As a result the seed point is propagated to the
entire volume based on certain criteria the user defines.

The key limitations with the conventional seeded grow-
ing region process are the large amount of cross-sectional
images a user has to go through. The user is also required
to have a priori knowledge of the data in order to quickly
identity the correct slice number and the appropriate seed
location on the 2D grey-scaled image. This procedure de-
mands a significant amount of time and does not lend to a
natural interaction scheme with the 3D volume (i.e. direct
manipulation of the 3D data).

In this paper, we propose a sketch-based interface for vol-
umetric seeded region segmentation. Figure 2 illustrates the

key stages of our method applied over a raw MRI super-brain
dataset (152x154x181). At first, the user loads the volumet-
ric data and defines an intensity range from the histogram.
And then the user directly sketches a ROI over the displayed
volume (Fig. 2, a). The system extrudes the ROI along the
viewing direction within the entire volume (Fig. 2, b - dotted
lines). The volume outside the extruded ROI is cut out and
the user places the seed at the red cross (Fig. 2, c). The region
starts to grow (Fig. 2, d) and finally the complete segmenta-
tion inside the extruded ROI is obtained (Fig. 2, e). In ad-
dition, the user could place multiple sketches from different
views to form arbitrary-shaped ROI. Our system uses GPU
programming for real-time rendering and interactive sketch-
ing. Furthermore, we utilize the stencil buffer to achieve a
processing rate that is independent of the sketch complexity.

The rest of the paper is organized as follows. In Section 2,
we review related work and current sketch-based interfaces
for volume segmentation. In Section 3, we outline our sys-
tem framework. In Sections 4, 5, and 6, we provide details of
our sketch-based system for volume segmentation. Results
are discussed in Section 7, and conclusions are presented in
Section 8.

2. Related Work

Interactive seeded region growing. Many segmentation ap-
proaches have been proposed for the 2D image segmentation
task. The set of well-known techniques include thresholding,
k-means clustering, watershed segmentation, and level-set
methods (see the survey conducted by Pham et. al. [PXP99]).
For segmenting 3D medical datasets, these techniques could
also be applied and adapted easily by re-using the 2D image
techniques. Sherbondy et. al. [SHN03] developed a fast vol-
ume segmentation system using GPU. Their work was based
on seeded region growing. The seed selection step allows the
user to paint seeds by drawing on the sectional views of the
volume. Their segmentation merging criteria are based on
non-linear diffusion metric. They also incorporated image
smoothing algorithms for noise conditions. More recently,
Schenke et. al. [SWD05] analyzed the GPGPU paradigm

c© The Eurographics Association 2006.
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and implemented the seeded region growing method with
fragment shaders and VTK. In order to fully take advantage
of the GPU parallelism, the user was encouraged to specify
as many seed points as possible.

Sketch-based interfaces for volume segmentation. For
general sketch-based modeling of volumetric data, Owada
et. al. [ONNI03] presented a system that captures hand-
drawn sketches and creates volumetric objects with internal
structures. Owada et. al. [ONOI04] further extended the in-
terface for users to define internal volumetric textures of a
model. The system allowed interactive design and brows-
ing for volumetric illustrations. Recent work for segment-
ing volumetric data have also focused on incorporating user
intervention and developing interactive segmentation sys-
tems. Tzeng et. al. [TLM03] developed a novel interface for
volume data classification. They allowed the user to draw
strokes on the cross-section of volume data that roughly in-
dicate foreground and background regions. The stroke infor-
mation was used to train a classifier that is designed for seg-
menting voxels. Yuan et. al. [YZNC05] presented a novel
method to cut out volumetric structures by drawing sim-
ple strokes directly on volume rendered images. Owada et.
al. [ONI05] proposed an intuitive user interface for volume
segmentation. The user traces the contour of the target re-
gion using a 2D free-form stroke on the screen. The volume
catcher system then returns a plausible 3D region inside the
stroke.

Similar to Owada’s approach [ONI05], the concept of
our system extends the stroke and sweeps through the vol-
ume. We use histograms as a first classification step whereas
they applied opacity transfer functions. In contrast, we adapt
closed strokes that include free-form and other variations.
Most importantly, our approach allows the user to interact
with a simple sketch-based interface for navigating to the
ROI instead of browsing through hundreds of cross-sectional
slices ( [SHN03]; [SWD05]). For seed planting, our tech-
nique is fundamentally 3D and the user no longer needs to
look at texture-mapped 2D planes. In addition, we enable
the user to define a sub-volume of arbitrary shape with few
sketches to constrain the region grow and provide rapid seg-
mentation feedback.

3. Particle System Framework

In our sketch-based system, we utilize a particle system
framework. Because of the generality and the fundamental
design of the framework, the system can be easily extended
to work with irregular datasets. Other potential applications
include general point-based systems and polygonal meshes
(which were converted to a point-cloud).

At the first stage of our system, a desirable range of in-
tensities is selected by using the intensity histogram to de-
fine target voxels from the volumetric dataset. Since only a
subset of the entire volume is rendered to the scene, we rep-
resent the target voxels by a particle system. We use lists of

particles for rendering and processing. This avoids the need
to traverse the 3D array containing the original dataset every
time we access these target voxels.

In order to maintain the lists of particles, we organize
them with a central particle system scheme. The particle sys-
tem contains a list of particle objects. Each particle object
can be organized and displayed by using the display list or
vertex buffer objects (VBOs). When the display list option is
used, each particle object contains an object color if particles
do not possess color information. The particle object also
maintains a list of particles and each particle contains infor-
mation such as: position (x,y,z), color (r,g,b,a), and refer-
ence to voxel (which contains intensity and gradient). Posi-
tion is used during the sketch-based volume cutting (Section
4). Reference to voxel is required to locate neighboring vox-
els during segmentation (Section 5). For rendering (Section
6), position, color, and voxel gradient (normal) are needed.

Alternatively, particle objects can utilize the various
VBOs stored in a collection of particle buffersets. Each
particle bufferset contains a vertex buffer (i.e. voxel posi-
tion), normal buffer (i.e. voxel gradient), and color buffer
(i.e. voxel intensity). Each of these buffers is stored on the
GPU texture memory using VBO. The required voxels only
travel across the system bus once whenever the histogram
is defined. Each particle object then maintains only index in-
formation into the corresponding particle bufferset. Particles
are rendered in either X-ray mode or surface mode (Section
6). Each particle object contains an attribute for its assigned
rendering mode.

4. Sketch-based Volume Cutting

To place the seed for the region growing, we use a novel
sketch-based interface. In the first stage, the user specifies
a ROI by a closed free-form sketch on the screen. The ex-
trusion of this sketch forms the ROI and likely contains the
target area (organ). This approach has several benefits: it in-
creases the performance of seed-growing after extrusion and
cutting, the user is able to navigate and place the seed more
easily, and finally it is very intuitive.

The main challenge here is to cut the extrusion from the
volume at an interactive rate. With the defined histogram
intensity range, a collection of particles is composed from
the 3D volume array. The set of particle attributes is pack-
aged into vertex buffer, normal buffer, and color buffer us-
ing VBO. These buffers are sent only once and stored on
the GPU texture memory for successive rendering and pro-
cessing. The sketched area is extruded along the view direc-
tion and pierces into the entire volume (Figure 3). The com-
puted sub-volume is rendered in the surface mode and the
background volume is rendered in the X-ray mode (Figure
9, right). Subsequent sketches affect only the ’visible’ sub-
volume currently rendered in the surface mode. Then the re-
maining task is to distinguish the particles that fall ’inside’
the extrusion from the ones that are ’outside’.

c© The Eurographics Association 2006.
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Figure 3: Sketch extrusion.

In order to find the list of selected particles that fall in-
side the sketched extrusion, one possible strategy is to use
the standard polygon fill or crossing test algorithms [Hai94]
[Fra]. For this, we can project the particle to the screen and
check whether it is inside of the sketched stroke. The speed
of this method depends on the number of points on the stroke
(as a polygon). Unfortunately, this method suffers from a
slow speed when the stroke (polygon) has a good quality.
Although we could implement the crossing test in GPU, the
speed is still dependent on the complexity of strokes and the
level of interactivity can vary depending on the user input.
Instead, we adapt a novel GPU-based technique that is inde-
pendent of the sketch complexity.

4.1. Computational Mask

The fundamental concept of our sketch-based system is a
real-time filtering process employing a computational mask
(Figure 4). We move the mask to traverse the entire volume
in a front-to-back order and pick up the particles (or vox-
els) that are inside the sketched area. The particles which
are not visited by this process are labeled as being ’outside’.
As depicted in figure 4, the volumetric dataset can be in any
orientation with respect to the computational mask.

Figure 4: Computational mask.

The computational mask is composed of 1s and 0s, where
1 indicates that the pixel is covered by the sketched area and
0 means that the pixel is outside the area. Figure 5 illustrates
the process for generating the mask. At first, the user places
strokes on the screen and a closed curve is obtained. Next,
we fill the enclosing area using the stencil buffer with a 1-bit

color [WNDS99]. Then we save the content of the stencil
buffer as a texture as demonstrated in Figure 5.

Figure 5: Generating the computational mask using the
stencil buffer.

4.2. GPU-based Sketch System

In order to quickly filter the entire volume with the gener-
ated computational mask, we perform all of our computation
in GPU and send back the result as a single texture to the
CPU. We leverage the workload to both vertex and fragment
shaders and optimize the speed by minimizing the program
complexity. Notice that we use the fragments (pixels) and
the framebuffer somehow different from their regular func-
tions. Instead of sequential processing of the particles, we
map many particles to the fragments at a time. This helps us
to use parallel architecture of GPU for processing of the par-
ticles. Therefore, the fragments’ "position" in our method is
an index to the particles instead of being a position of vis-
ible pixels. We also use a binary "value" for the fragments
to show whether the particle is inside of the extrusion. To
map the index of particles, which has a linear order, to the
position of fragments, that has two components, we use a 2D
texture coordinate buffer. In addition, not all particles can be
uniquely mapped to the screen. Consequently, to process all
of the particles, we need to do the process in several passes of
saving the current screen and mapping a new set of particles.
For saving the current screen, which contains binary values,
we use a one-bit plane of the framebuffer (off-screen). For
example, with a given 100x100 sized screen, we are able
to process 10,000 particles for each pass through the graph-
ics pipeline. Figure 6 gives an overview of the processing
pipeline.

4.2.1. Preparing Data Buffers for Pipeline Processing

The vertex buffer (1) contains all particles collected from the
histogram pre-classification phase. It is not deleted unless
the intensity range has been redefined. This enables the sys-
tem to quickly fetch the target particles whenever a sketched
region shall be resolved. This mechanism prevents unneces-
sary traffic of particles traveling across the system bus for ev-
ery processing cycle. The texture coordinate buffer (2) stores
a 2D array of screen coordinates (0, 0), (0, 1), ..., (s, t), ...,
(height - 1, width - 1). Each particle is mapped to a screen
coordinate using the associated texture coordinate. During
the execution of the processing pipeline, we redirect every
particle to its designated screen location.
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Figure 6: Sketch system implemented in GPU.

4.2.2. The Vertex and Fragment Programs

The vertex shader (3) is used to perform the particle coordi-
nate transformation. In order to rasterize the current vertex
(e.g. rendered as a 3D point) to the designated fragment loca-
tion, we swap the incoming attributes as follows. The vertex
(input) is multiplied by the model-view matrix, and the result
is assigned to the texture coordinate (output). The accompa-
nied texture coordinate (input) is multiplied by the projec-
tion matrix, and the result is assigned to the position (out-
put). After the vertex shader has finished processing, both
the resulting texture coordinate and position are rasterized
and passed onto the fragment shader.

The fragment shader (4) performs the masking operation
and assigns a pre-defined render color if the mask value is
valid. The input texture coordinate (i.e. the particle’s posi-
tion assigned by the vertex shader) is adjusted with respect
to the projection parameters and the value is looked up from
the computational mask stored as a stencil buffer texture (5).
If the texture look-up results a value of 1, then the parti-
cle processed by the current fragment program is inside the
sketched region; otherwise, it is outside.

4.2.3. Parameter Calculations

Note that we only need one bit in the off-screen buffer (6) to
store the selection information (i.e. one being selected, and
zero being not selected). For a typical off-screen color buffer
with RGBA components, and each component having 8-bit
resolution, it is possible to encode 320,000 particle selec-
tions information by adding all render colors. Thus, the re-
quired off-screen buffer dimension is d

√
N/32e, where N is

the total number of particles to be processed from the vertex
buffer. The calculated buffer dimension becomes the width
and height of the off-screen buffer.

4.2.4. Composing the Result

Finally, the CPU (7) receives the texture and decodes the
selected particles to construct two index buffers, one con-

taining indices of the selected particles and the other one for
the non-selected particles. These index buffers are then sent
and stored in the GPU texture memory for the next process-
ing cycle as well as for rendering purposes. In subsequent
sketch operations, the index buffer (8) (storing the indices
of the previously selected particles) is used to index into the
vertex buffer when the ’fetch particles’ command has been
issued.

5. Seeded Region Growing

After describing a rough estimate of the target area using the
sketch-based volume cutting, the user can navigate the vol-
ume and place a seed point directly on the visible surface
to obtain an accurate segment. To find out the seed loca-
tion in the 3D object-space from a 2D input device (e.g. the
mouse), we use an intuitive interface that is consistent with
our sketch-based system. In this interface, the user inputs a
visible voxel (particle) by clicking the mouse on the screen.
The entered pixel can be associated with several particles in
various depths and we need to find the best candidate. To do
this, we extend the pixel area to a larger rectangle whose ex-
trusion in the volume contains all the involved particles (see
Figure 7). To extrude the rectangle in the volume, we use the
same technique as described in section 4. After determin-
ing all the involved particles, we select the one that has the
shortest distance to the entered seed point (Figure 7). The
selected particle is then used as the actual 3D seed point. For
the region growing algorithm, we start from the seed point as
the current voxel and move to adjacent voxels with intensity
values close to the current intensity. We use the breath-first
search algorithm as appears in the context of graph travers-
ing techniques [CLRS01]. This approach helps to maintain
a balanced and coherent growth. We use a threshold for the
closeness of the intensities. It is obvious that the growing
process can be sensitive to thresholds and the resulting re-
gion can be dramatically enlarged when the threshold is in-
creased by one or two scales. However, as a benefit of our
volume cutting tool, we can constrain the growing region to
be inside of the cut sub-volume as a rough estimate of the
desired region.

Figure 7: Searching the seed point.

6. Rendering

In our approach, we adapt the splatting technique [Wes91]
for direct volume rendering using GPU programming. For
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rendering the volumetric data, each particle associated with
a voxel is rendered as a square texture using the OpenGL
hardware accelerated point sprite. Point sprite enables us
to send only a single vertex information for each particle
(voxel) through the rendering pipeline. We adapt the Gaus-
sian kernel as our texture generation function (Figure 8, left).

In the fragment shader, we simply check the incoming
opacity value and discard the current fragment if alpha is
less than 0.2. We adapt two rendering modes for point-based
splatting: X-ray and surface modes (Figure 8, middle and
right, respectively).

Figure 8: (left to right) Disk texture with Gaussian dis-
tributed transparency values. Different rendering of the
brain: X-ray and surface modes.

The X-ray mode accumulates all fragments to compute
the final pixel value with the following OpenGL formula-
tion: I f (x) = αnew(x)Inew(x)+ I f (x) [XC04]; where I f (x) is
the frame-buffer intensity value at pixel location x, Inew(x) is
the incoming fragment value, and αnew(x) is the opacity of
the new fragment. We use glBlendFunc(GL_SRC_ALPHA,
GL_ONE) to perform the accumulation [XC04].

In order to render particles and obtain a surface represen-
tation, we apply a two-pass rendering technique that con-
sists of the visibility pass followed by the shading pass
[BHZK05]. During the visibility pass, we perform the so-
called ε-test operation. For implementing the ε-test, we per-
form the following steps. First, we scale all the particles
with the value of ε in the negative z-direction. Then we ren-
der to the depth buffer and turn off the color buffer. Dur-
ing the shading pass, we perform lighting computation for
each particle processed by the vertex shader. Note that in
both passes, we discard fragments whose opacities are less
than 0.2. We also combine the X-ray mode and the surface
mode to form the hybrid mode as follows: (1) render the par-
ticles (X-ray mode) to the frame buffer using alpha-blending
with no lighting and (2) render the particles (surface mode)
and perform the visibility pass and the shading pass respec-
tively. However, during the visibility pass while rendering
the surface mode particles, we enable writing to both the
depth buffer and the color buffer. In the fragment shader, we
output black pixels for all fragments processed (i.e. to over-
write the X-ray mode particles).

Figure 9: Sketch types: (a) rectangular strokes, (b) elliptical
strokes, and (c) free-form strokes.

7. Results and Discussions

All the results were generated on an AMD Anthlon
64 X2 3800 with a GeForce 7800 GT, 256 MB card.
We selected raw volumetric datasets of the brain (MRI,
152x154x181), skull (MRI, 2563), and angiography (3T
MRT, 256x320x128).

For all datasets, the sketch response time (SRT) was be-
low 1 second. From loading a full-range histogram, Figure
2 shows the segmentation of grey and white matter of the
left hemisphere of the brain (SRT = 0.384 sec). Figure 9
illustrates the before/after effects on the brain dataset after
sketching rectangular, elliptical and free-form ROIs (SRT
= 0.515, 0.392 and 0.384 sec, respectively). Figure 10 (top
row) shows a successful segmentation of the right ventricle
with SRT = 0.267 sec. Figure 10 (bottom row) illustrates a
series of volume cutting after free-form sketched ROIs (SRT
= 0.261 sec) and the resulting segmented portions of the
teeth. With the 3T MRT time-of-flight angiography dataset
of a human head (Figure 11), we were able to quickly seg-
ment the carotid and cerebral arteries with SRT = 0.224 sec.

Our system also allowed a real-time preview of seed lo-
cations as the user moves the mouse. The interactive rate of
seed searching was achieved by utilizing the core system im-
plementation and from the aid of GPU. Note that in order to
obtain smooth sketching lines, we froze the background ren-
dering (i.e. the volume splatting) by saving the entire scene
to a texture. Thus when the user placed strokes on the screen,
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we rendered the screen-sized texture first followed by the
ROI strokes.

8. Conclusion and Future Work

We presented a novel interface for volume segmentation
based on seeded region growing. Instead of the traditional
way of browsing from hundreds of cross-sectional slices, we
proposed a sketch-based interface for interactive volume ex-
ploration and navigation for the ROI. We provided real-time
rendering when the user interacts and places the seed point
from a truly 3D environment. More importantly, our sketch-
based system constrained the region grow from the cut sub-
volume to enforce focus-of-attention. In designing from a
particle system perspective, our approach can be easily ex-
tended to a number of applications including other point-
based systems, polygonal meshes, and irregular volume with
changing topology.

Future improvements include extending our system with
other algorithms for sketch-based volume manipulation. It
would also be useful to have the capability of multiple
sketched ROIs assigned in different regions of the volume
to allow, for instance, better control of the level of detail
in selected regions of the dataset. The criteria that we used
to judge the quality of the results were solely based on our
observations on the speed and flexibility of volume data cut-
ting, exploration, and seed planting/growing control. It is im-
portant to conduct more formal evaluations and user/clinical
studies to provide quality sketch-based volume segmentation
tools for professionals in medical science.
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Figure 10: Segmentation of right ventricle (top) and partial teeth (bottom). (a) Raw volume, X-ray, with sketched-region. (b)
Resulting cut, rotating the view, new sketch. (c) Resulting cut, rotating the view, plating the seed. (d) Region growing contained
within sketched/resulting volume from (c).

Figure 11: Segmentation of carotid and cerebral arteries. (a) Raw volume, X-ray, with sketched-region. (b) Resulting cut,
rotating the view, plating the seed on the arterial branch. (c,d) Region growing contained within sketched/resulting volume from
(b).
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Illustrative Deformation of Volume Data
Carlos D. Correa

Computer Science Department, University of California, Davis

1 Introduction

The purpose of visualization is to gain understanding of 3D structures through images. Although many rendering tech-
niques have been proposed for this purpose, the effective visualization remains a challenging task, due to occlusion,
clutter and noise. Solutions to this problem include rendering techniques, abstraction and interaction. Here, we explore
a different approach, where the user can manipulate the dataset directly. We call this type of manipulationIllustrative
Deformation. The termillustrative can be understood in two ways. One, in the sense that the deformation is inspired
by the types of operations that are often depicted in scientific illustration, such as peels and incisions, which are usedto
improve visibility of features or to better depict a procedure. But also, since the purpose of deformation is to improve
visualization, it does not need to be physically correct, but it can be defined empirically. In this tutorial, we will describe
a generic pipeline for obtaining such deformations on volumetric models at interactive rates.

2 Rendering Deformation

Deformation refers to the change in time of the position and orientation properties of graphical elements. There has
been a considerable amount of research of deformation of surface meshes, where deformation is obtained by directly
transforming the vertices of the mesh. Volumetric data sets, in contrast, are represented using voxels, three-dimensional
points that include appearance properties, such as opacityand color. Unlike surface meshes, connectivity information is
not explicit, which complicated the creation of meaningfuldeformations. Methods for volume deformation, often coupled
with the rendering process, include ray deflectors [14],free-form deformation [2], pre-defined point-wise deformation
[16], splitting operations [13], and chain-mail algorithms [10]. These methods can be considered as empirical, as opposed
to physically based methods. Early approaches addressed deformation at the modeling stage [12, 11, 15, 8, 9]. Due to
the large size of volumes and the sampling considerations, it is more practical to couple deformation and rendering in a
single stage. For a more complete survey, refer to Chen et al.’s [3] and Nealen et al.’s surveys [17].

In general, we can defined deformation as a mappingTF : R
3 7→ R

3, such that, for a given pointp , we can obtain
a new positionp′ = TF(p). We denoteTF as aforward transformation. Let PV be the set of all pointsp in the volume
representationV of an object. After deformation, we obtain a new setP′V = {p′|∀p ∈ PV ,p′ = TF(p)}. The new axis-
aligned bounding volume for all the points inP′V , denoted asV ′, is called thedeformed volume. Forward transformation
is of limited use in the deformation of volumetric objects due to the impracticality of using each voxel as a primitive.
Instead, volume deformation is commonly implemented usingspace warping techniques. We distinguish two different
types of methods:indirect anddirect space warping. At the core of these two is the idea that volume rendering is obtained
by sampling the deformed volumeV ′.
Indirect Space Warping. Indirect or proxy-based space warping is obtained by defining a set of control points which
are deformed using a forward transformation. The set of deformed control points are then used to “reconstruct” the
embedded volume in the new configuration, usually via interpolation. This is depicted in Figure 1(a). Methods in this
category include free-form deformation [24], direct deformation of trilinear patches [19] and skeleton-based deformation
techniques [9, 20, 21]. Extending these methods to include cuts is more difficult, as the proxy geometry needs to be
tessellated [14].
Direct Space Warping. To avoid dealing with complex tessellation, deformation can be defined as a point-wise warping
of the volume. In this case, we need and inverse transformationT−1

F so that, for each pointp′ ∈ P′V we obtainp = T−1
F (p′).

This approach was been applied to ray tracing systems in the form of ray deflectors [14] and spatial transfer functions
(STF) [4]. Direct space warping techniques extend easily tomodel cuts, bytagging points that do not contribute to the
final image. LetP′V ′ be the collection of all points inV ′. SinceP′V is a set of all points located inV ′ with a pre-image in
V , the empty space inV ′ is thus defined by a set of pointsP′empty = P′V ′ −P′V . Instead of using the inverse transformation,
we warp each point with abackward transformation TB, defined as:

p = TB(p′) =

{

T−1
F (p′) p′ ∈ P′V

∅ p′ ∈ P′empty
(1)

where∅ denotes a null position, indicating a point that does not have an origin prior to the manipulation. In general, such
points are considered empty, or completely transparent. Wethereby assume that, for purposes of rendering,f ′(∅) = 0.
This method is depicted in Figure 3(a). .
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Figure 1: Space warping techniques for Volume Deformation

3 Illustrative Deformation Pipeline

The purpose of this tutorial is to develop the foundations for building a generic volume deformation pipeline. Because
of the ability to generate high quality rendering, we focus on direct space warping. The key concept for deforming
volumetric objects is that deformation is part of the rendering process. The rendering process, as depicted in Figure 2,
is composed of the following stages: (1)displacement setup, usually as a pre-process, where deformation templates are
defined, (2) Volumeslicing, where the volume is divided into view-aligned slices (3) for each pixel generated by slicing,
we performwarping andsampling to obtain the deformed sample values, (4)lighting and finally (5)compositing.
Displacement Setup. Before applying a deformation, we define a series oftemplates, inspired by surgical tools and
manipulation operators, which are encoded asdisplacement maps. Example operations are peeling, bending and cutting.
Displacement maps are textures that define a spatial displacement rather than a color attribute, and are widely used to add
detail to surface models [5, 18, 22]. Here, we introduce a generalized notion of a displacement map, which allows for
unconventional features such as unorthogonal and discontinuous displacements [7]. To create a displacement texture,D
we first specify the forward operation

−→
D B procedurally, and then sample its inverse transformationD =

−→
D C at discrete

positions. Because of the presence of cuts, the inverse may not be defined for all points in the domain of the deformation,
soD is extended such that at leastC0 continuity is obtained. This is done by creating an alpha mask, where a value of
1 means that the point has a pre-image in the co-domain of

−→
D B and 0 otherwise. To avoid aliasing artifacts due to the

binary mask, we define the final alpha maskA as its distance field.
Warping and Sampling. In order to determine the displaced volume, we slice the proxy scene geometry into view-
oriented slices. The bounding box ofV ′ can easily be found by combining the bounding boxes of the object(s) and their
displacements. For every pixel generated, thewarped coordinate is then computed as:

p = T−1
F (p′) = p′+D(p′) (2)

Next, we sample the scalar fieldf at the positionp and retrieve the volume values. Finally, in order to handle discon-
tinuities, we sample the alpha maskA at the positionp′ and modulate the pixel’s color components with the mask, as
follows:

f ′(p′) =

{

f (p) A(p)≥ 0

0 otherwise
(3)

The use of a smooth map to define continuity ensures that the surfaces of cuts are rendered with high-quality and without
aliasing artifacts.
Displaced Surface Normal. In order to properly shade the object, we need the normal information at each point.
Since we store objects as volumes, normals can be obtained using finite differences or can be pre-computed and stored
in a 3D texture. Because of deformations, normals need to be computed indeformed space, or transformed from the
original normals. Because of speed and quality, it is betterto transform the normals. The new normal atp′ can be
obtained by transforming the original one atp using the Jacobian of the deformation, as proposed by Barr [1]. The
normal transformation is as follows:

−→n (p′) = (I+J
(p′)
D )>−→n (p) (4)

where−→n (p) is the original undeformed normal,JD is the Jacobian of the displacement field andI is the identity matrix.
Another type of normal is the one introduced by a cut, since new surfaces may appear. To adjust the normal at the surface
without introducing aliasing artifacts, we gradually correct the normal in the vicinity of the cut to the desired normal, via
blending:

−→n (p′) = ω(I+JD)>−→n (p) +(1−ω)∇(p′)
A (5)

whereω ∈ [0,1] is a blending factor. This blending mechanism is similar to the solution proposed by Weiskopf et al. [23]
for volumetric cutaways.
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Figure 2: Overview of Illustrative Deformation of volumes

3.1 Overview of the algorithm

In summary, the algorithm for illustrative deformation is as follows:

Algorithm 3.1: DEFORMATION ALGORITHM(...)

COMPUTE DEFORMEDBOUNDING VOLUME(B)
for each sample p′ ∈ B

do


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



p← p′+D(p′)
s←V (p)
αD← A(p′)
n← ESTIMATE ORIGINAL GRADIENT(p′)
n′← TRANSFORMNORMAL(n)
c,α ← CLASSIFY AND L IGHT(s,n′)
if αD ≤ 0

then α = 0
COMPOSITE(c,α)

The function callEstimate Original Gradient can be implemented using finite differences, or sampling from a pre-
computed gradient volume. The function callTransform Normal applies the operation in Eq.(4), and the function call
Classify and Light maps density values to color and opacity, based on transfer functions and a local illumination model.
This algorithm can be easily implemented on a GPU-based volume renderer, as part of the pixel shader. For a texture-
based renderer, the bounding volumeB is sliced in a view-aligned manner. For a GPU raycaster, eachpixel generates a
ray, which is sampled along the view direction to generate the pointsp′.

3.2 Interaction with Displacement Maps

An important aspect of this approach, is the ability to deform volumes at interactive rates. Displacement maps can be
thought of as warping objects that can be moved, rotated or scaled arbitrarily within the target volume. For example, by
translating a peeling tool, the user can interactively openand close a peeled region from a volume. By scaling a cutting
operation, the user can increase or decrease the size of the incision.

We can generalize this notion by allowing affine transformations to be performed on the sample points before defor-
mation, i.e. as an extra warping operation. We can extend thedisplacement equation to:

p̂ = M×
(

M
−1p̂′+D(M−1p̂′)

)

(6)

whereM is a 4×4 affine transformation and the points are given in homogeneous coordinates. The normal transformation
when undergoing this type of coordinate transformation is given by the concatenation of the transpose of the Jacobians
of the coordinate transformation [7], which leads to:

−→n (p′) =
[

(S−1×R)(I+JD)> (R>×S)
]

−→n (p) (7)

Where the affine transformations is represented as a rotation(R) followed by a scaling (S) and a translation (T) , i.e.,
M = T×S×R.
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p

CUT

(a) Cuts for axis-aligned deformation

2. p = p’

3. p =
M

B1. p = T (p’)

CUT

(b) Cuts with mask-based deformation

Figure 3: Simulation of cuts with direct space warping

This transformation via affine matrix is an efficient mechanism for controlling the shape, position and orientation of
a displacement map. Since this method only involves multiplication of constant matrices, this is an efficient alternative
for controlling the displacement in an interactive application.

4 Feature Aligned Deformation

Because the above algorithm works directly on the volume data, it is insensitive to features of interest. In many cases,
it is desired toalign an operator so that it follows a surface of interest. But since objects of interest can be complex, a
geometric transformation of the deformation may be difficult to derive. Instead, amasking operator yields acceptable
results. The key idea is to modulate the deformation so that certain tagged points do not undergo deformation. In order
to do that, we introduce amasking function M, which defines the feature-sensitivity of points in the original volumeV ,
and is typically represented by a volume data set. WhenM(p) < 0, p is part of the feature to be preserved, and cannot be
transformed. LetPV be the set of points of the original volume andP′V the deformed set of points. LetPM be the subset
of PV , such thatPM = {p|p ∈ PV ,M(p) < 0}, andVM is an axis-aligned bounding volume ofPM. Any point not inPM is
operatable [6].
Modified Warping. In feature-aligned deformation, an inversely transformed pointp′ may have been masked as non-
operatable byM, which results in empty space. To handle the complexity of this inverse mapping, we introduce an initial
“probe” p0 = TB(p′). We then obtain the warped positionp by taking the feature mask into account as:

p =











p0 p0 ∈ PV ∧ (M(p′)≥ 0∧M(p0)≥ 0)

p′ p′ ∈ PV ∧M(p′) < 0

∅ otherwise

(8)

These three cases are shown in Figure 3(b), namely: (1) the point is transformed, (2) the point is masked and therefore
untransformed, and (3) the point is empty due to the feature-aligned cut. One example definition of a mask is a distance
field of a feature of interest, such that it is positive in the interior of the object and negative on the outside. Points lying in
the surface of the feature have mask value zero.
Modified Normal Estimation. Similar to the original algorithm, the normals must be transformed. However, the
normal at a point is influenced by an additional factor, whichis the case for those points in the vicinity of the surface of
the feature of interest. This can be done in two consecutive blending operations. The first blending is defined in Eq.(5),
which adjusts the normal near cuts. The second blending adjusts the normal near the surface of the feature of interest.
The final normal at a point is then a combination of this adjusted normal and the normal of the surface∇M.

−→n (p′) = β1
−→n ∗

T
+β2∇M (9)

where the weighting factorsβ1 andβ2 are chosen so that the normal for a point in the surface of an object is∇M, and for
a point in the underside of the volume after removing the feature (when undergoing deformation) is−∇M.
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(a) CT Head peel (b) Forefoot incision

Figure 4: Comparative Results of Illustrative DeformationMethods

4.1 Overview of the modified algorithm

We now modify the original deformation algorithm, to account for the mask defining features of interest.

Algorithm 4.1: MODIFIED DEFORMATION ALGORITHM(...)

COMPUTE DEFORMEDBOUNDING VOLUME(B)
for each sample p′ ∈ B

do























































































































p← p′+D(p′)
m←M(p′)
αD← A(p′)
if m≥ 0

then







m←M(p)
if m < 0

then αD← 0

else
{

p← p′

αD← 1
s←V (p)
n← ESTIMATE ORIGINAL GRADIENT(p′)
n0← TRANSFORMNORMAL(n)
n′← ADJUSTNORMAL(n0,m)
c,α ← CLASSIFY AND L IGHT(s,n′)
if αD ≤ 0

then α = 0
COMPOSITE(c,α)

The main difference with the original algorithm is the explicit handling of cases for finding the proper deformed point,
as depicted in Figure 3(b). In addition, a new function callAdjust Normal is required to apply the extra transformations
shown in Eq.(9).

5 Example Illustrations

Figure 4 shows a comparative table of applying mask-based deformations to two CT data sets, showing the original
volume, the axis-aligned deformation, and feature-aligned deformation. On the left, we see a peeler deformation applied
to the CT head data set, and an incision on a forefoot CT data set on the right. Figure 5(a) shows an application of a
continuous deformation. In this case, we simulate an illustration of a whiplash action, with a bending operation. Figure
5(b) shows an illustration of one stage of a craniotomy. We applied this to the CTHead data set, after an approximate
segmentation of the skull, and also to a portion of the segmented Visible Man data set. Figure 5(c) illustrates two stages
in a frog dissection procedure, where the user can interactively control the size and depth of the incision tool.

6 Summary

This part of the tutorial described a general pipeline to obtain illustrative deformations. This type of manipulationsare
often found in surgical illustration, where the depiction of cuts and deformation help understand a procedure, provide
context, or elucidate the shape of an object. We showed a practical specification of deformations usingdisplacement
maps, which can be implemented efficiently in contemporary programmable hardware using 3D textures. To obtain high
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(a) Illustration of whiplash injury (b) Illustration of a craniotomy (c) Virtual frog dissection

Figure 5: Example Illustrative Deformations

quality rendering of deformed volumes, we make use ofmask volumes to (1) control the shape of cuts to avoid aliasing
artifacts and (2) preserve features of interest. We also showed a series of transformations to adjust the normals so that
the isosurfaces of interest are correctly depicted and lit according to a local illumination model. Through a number of
examples, we have shown the flexibility and operatability ofthese methods, and how illustrative deformation can be
achieved at interactive rates.
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Example-based Illustrative 
Modeling and Rendering
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Motivation

Learn from examples for case that are 
difficult to represent and model

Existing 2D illustrations
Existing models and datasets

Fulfill example-based illustration by means of

Shape deformation
Texture synthesis

Computer-generated illustration

Data Acquisition Data Manipulation

Interactive 
Illumination

2D Deformation

3D Analogy

3D Deformation

2D Analogy

Overview

Shape and shape variations by examples

Convey objects from measured datasets
Interactive shape manipulation
Example-based shape transfer

Appearance and rendering styles by examples

Texture synthesis and transfer
Rendering styles by examples

Modeling from measured data

Boundary shapes 
Iso-surface [Lorrence87]
Volumetric image processing [Whitaker00]
Transfer function-based [Kitware]

Modeling from measured data

Structural information
CT [Dong05]
DTI [Wenger04]

Visible Human Modeled

DTI data

Fiber illustration



Modeling from measured data

Texture and appearance
Vision [Dorsey04]
Capture [Gross07]

Interactive manipulation

Volume deformation
See Carlos D. Correa

Interactive manipulation

Surface deformation
Freeform deformation
Skeleton deformation
Mesh deformation

[Sederberg86] [Ju06]

[Funck06]

[Yu05]

Example based shape transfer

3D to 3D [Sorkine04, Yu04]
Transfer locally encoded details

( )
( )

1
N iid ∈

= −∑i i
v

δ v v

( )1
( )

ds
len γγ ∈

−∫ i
v

v v

γ

Example based shape transfer

2D to 3D [Zelink04]
Using curves to modify surface contour

Example based shape transfer

2D to 3D [Zhou06]
Using curves to drive deformation



Example based shape transfer

2D to 3D [Chen07]
Using curve to drive deformation

Live demo

Example based shape transfer

2D to 3D [Chen07]
Using distance field to convert surface to data 
to get smooth boundary effects

Example based shape transfer

3D stylization from 2D example
Context curves, silhouette, feature points, 
local geometric details

Video demo

Example based shape transfer

2D deformation by example
Differential based 2D mesh manipulation

Example based shape transfer

2D deformation by example
Example-based shape manipulation 



Example based shape transfer

2D deformation by examples
Flexible post-process to modify the results

Video demo

Example based deformation transfer

3D to 3D [Sumner04]

Example-based appearance transfer

Color transfer [Lu05]
Simple representation and similar distribution

Example-based appearance transfer

2D texture synthesis [Owada04]

Example-based appearance transfer

Surface texture synthesis [Gorla03]

Example-based appearance transfer

Solid texture synthesis [Lu05]
Simulate styles of professional illustrators 
Simplify user interaction



Example-based appearance transfer

Solid texture synthesis [Dong05]
Synthesize the texture guided by the vector field from visible human

Example-based appearance transfer

Solid texture synthesis [Lu07]
Wang cube for non-periodic patterns

Colon & Pelvis

Example-based appearance transfer

Rendering styles transfer

Lightmap [Bruckner07]

Hatching by example [Jodoin02]

Stippling by example [Barla06]

Conclusions

Transfer intrinsic features from 
multiple sources

Employ multiple styles in 
illustrations

Always keep the user in the 
interaction loop
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