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Exploring Convolutional Neutral Network and Machine Learning for Oil Sands Drill Core 

Image Analysis 

 

Introduction 

 

Permeability is a measure of the ability of fluids to flow through porous media and is an important factor 

in characterizing the McMurray oil sands for in-situ recovery. The traditional methods for estimating 

permeability in oil sands can be challenging due to the presence of immobile bitumen in the cores. 

However, permeability can be estimated using particle size distribution (PSD), which is a more cost-

effective alternative to laboratory experiments (Wilson et al., 2008). The availability of drill cores from 

several wells in this region makes it possible for geologists to conduct detailed grain size analysis and 

determine PSD from various sections of the well. In addition, research has shown that there is a linear 

correlation between permeability and mean grain size (MGS), which can be derived from PSD analysis, 

providing further insights into permeability through the examination of MGS (Yoneda et al., 2019). 

 

The use of machine learning (ML) and convolutional neural network (CNN) algorithms with digital 

images has made it possible to automate the traditionally labor-intensive process of grain size analysis 

in the mining industry (Tran et al., 2022). In this research, we apply these technologies to drill cores 

from McMurry oil sands, a task previously hindered by the presence of bitumen and difficulties in 

obtaining physical samples from different depths of many wells. Several thousands of core photos and 

PSD data were available to this study. This availability facilitates the use of ML and CNN techniques 

to accurately classify the rock types (facies) and determine the MGS in the drill core samples. We 

evaluate the effectiveness of CNN techniques to extract features from core photos using a pre-trained 

VGG-16 CNN model (Tammina, 2019) and then train a Random Forest model to predict the outputs 

(Rahimi et al., 2022). Using the extracted features, the facies and MGS are accurately estimated with 

reduced computational time. This work is one of the first research on the application of ML and CNN 

methods for characterizing oil sands drill core using digital images.  

 

Proposed Methodology 

 

This section outlines the key components of our proposed methodology, including data preparation, 

feature extraction using a CNN, and the training of a ML model for predicting facies and the mean grain 

sizes from core images. 

 

Data Preparation 

 

After storing the core samples in the boxes, these are taken to the laboratories, and the photos of the 

core slabs are captured (Figure 1: left). Information about the drilled well, possible depth, and core ID, 

among others, are also recorded at this stage. Since the photos contain a collection of core slabs, each 

core sample is cropped based on the interval points annotated in the core slab photos. The interval 

starting and ending points have been set to indicate a core sample for measuring the PSD.  

 

Data Annotation with Facies 

 

Cropped photos of core samples are labeled with an appropriate rock type (facies) by the domain experts 

based on the visual mud index (VMI) logs (Figure 1; right). This index reflects the proportion of mud 

in the sample. Samples with a VMI below 5% are classified as “F1” (sandstone), and those with a VMI 

between 5% and 15% are known as “F2” (Sandy Inclined Heterolithic Stratification). Similarly, for 

VMI between 15% - 30%, the facies are labeled as “F3” or IHS, and the procedure is repeated until 

100% VMI. Geologists are interested to identify the reservoir sections with good quality rock for better 

well placement. “F1” is considered a good quality rock as it contains coarse sands with bitumen, 

whereas the other facies, such as “F3”, “F4” frequently contain several interbedded sand and mud 

intervals that can hinder production.  
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Figure 1 Photos of a collection of core samples collected by Suncor Energy Inc. (left) and examples 

of different core samples (right) after cropping the images labeled with facies. 

 

The data available to this study includes core images labeled as “F1”, “F3”, and “F4” with “F1” being 

considered good quality and “F3” and “F4” poor quality (F2 was not present in the dataset). These poor-

quality images are combined and labeled as “not F1” resulting in a total of 225 “F1” images and 220 

“not F1” images. The proposed classification model will predict whether a core sample image is “F1” 

or “not F1”. 

 

Data Annotation with Mean Grain Size 

 

The drill core dataset includes PSD data for each core sample, determined using sieve analysis and laser 

diffraction system (LDS) methods (Wilson et al., 2006). The dataset also includes information (e.g., 

interval points) about the wells from which each sample was collected. To calculate MGS from the 

PSD, a cumulative probability distribution is created for each sample. This is done by plotting the 

cumulative mass percentage finer against the midpoint of each size interval. The cumulative mass 

percentage finer is the total mass of particles that are smaller than or equal to the size of the current size 

interval being considered. For example, if the current size interval is between 0.1 and 0.2 millimeters, 

the cumulative mass percentage finer would be the sum of the mass percentages of all particles that are 

smaller than or equal to 0.2 millimeters. Then, a probability distribution is derived from the cumulative 

distribution. This probability distribution represents the likelihood of finding particles within a certain 

size range. Finally, the MGS is calculated for each sample within a specific range, typically between 50 

and 300. 

 

Proposed Model Architecture 

 

In this paper, three approaches are explored for facies classification and MGS estimation from drill core 

photos, including (1) the application of transfer learning on the pre-trained VGG-16 CNN model, (2) 

fine-tuning a few top layers of VGG-16, and (3) the combination of VGG-16 and traditional machine 

learning (ML) algorithms. VGG-16 is a CNN model that is trained on over 14 million ImageNet data 

belonging to 1000 categories (Russakovsky et al., 2015). The reason behind following the VGG 

architecture is not only the high accuracy but also its efficiency and, more importantly, its adaptability 

to other image classification problems than ImageNet (Tammina, 2019). Furthermore, the VGG-16 

model can extract meaningful features from data due to having many convolutional layers.  

 

VGG-16 structure starts with two convolutional layers, followed by a max-pooling layer. The collection 

of convolutional layers and the max-pooling layer is called a convolutional (Conv) layer block. For the 

first two convolutional layer blocks, it follows the same combination. Unlike the first two blocks, the 
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rest of the model architecture contains the combinations of three convolutional layers followed by a 

max-pooling layer. Overall, the VGG-16 model is designed with five convolutional layer blocks. 

Finally, after the five convolutional layer blocks, at the top of the model, it contains three fully 

connected (FC) layers where the last FC layer produces the model’s output. 

 

 

Figure 2 Block diagram of the proposed facies classification and MGS prediction workflow using the 

combination of VGG-16 and Random Forest. 
 

In the first experiment, we freeze the convolutional layer blocks of the VGG-16 model to avoid model 

weights being updated during the training process. This strategy is implemented to utilize the pre-trained 

weights of the model and extract the features from the core photos. However, in the second approach, 

we fine-tune the weights of the last convolutional layer block of the pre-trained VGG-16 model, along 

with training the top layers. Here, the training process forces the weights to be calibrated to obtain 

features explicitly associated with the dataset. Therefore, in this approach, we un-freeze the last 

convolution block of the VGG-16 model and train it along with the layers related to the target. 

 

In the third approach, VGG-16 and RF models are combined. We extract the features from the last 

convolutional layer block of the VGG-16 model. We use an RF classifier for facies classification, and 

to predict MGS from core photos, we use an RF regressor. This strategy is illustrated in Figure 2. We 

also compare the performance of decision tree classification and regression with that of RF models. 

Facies classification performance is evaluated using precision, recall, accuracy, and F1-score, while 

mean absolute error (MAE), root mean squared error (RMSE), and percentage error (PE) are used to 

evaluate MGS prediction performance. 

 

Experiment and Results 

 

Before training the models, we normalize the input data by re-scaling the pixel values from 0-255 to the 

range 0-1 preferred for the CNN model. As we have all the images and corresponding labels, the data 

are split into training and testing sets before training the models. A testing set is used to evaluate how 

the trained model performs on data that the model has never seen before. The performance of the 

proposed model is further assessed using a 10-fold cross-validation technique. The models are trained 

for an upward bound of 20 epochs in 64 batches and model checkpoints are used to save the models 

and weights in a checkpoint file, so that the models or weights can be loaded to continue training from 

the saved file. Table 1 shows that the proposed approach combining the VGG-16 with the traditional 

RF model outperforms the other methods by accurately predicting the facies and MGS from the core 

photos. Experimental results indicates that the features extracted by the VGG-16 are highly informative 

for classification, further, MGS estimation using the extracted features can provide the best outcome 

when the RF model is employed. 
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Table 1 Summary of the performances of the explored approaches for facies classification and 

estimating MGS from oil sands drill core photos 

 

Model Architectures Facies Classification MGS Prediction 

Accuracy Recall Precision F1-score RMSE MAE PE 

Transfer learning on 

VGG-16 

93.15 94.00 94.00 94.00 46.33 36.25 23.54 

Fine-tuning VGG-16 96.30 98.00 98.00 98.00 49.29 38.28 24.86 

VGG-16 and Decision 

Tree 

94.52 96.38 93.52 94.84 51.60 40.14 26.06 

Proposed: VGG-16 and 

Random Forest 

98.87 99.00 99.00 99.00 16.89 11.59 7.53 

 

Conclusion and Future Work 

 

Permeability is a key property of the reservoir rocks, which can substantially influence the reservoir 

performance. Traditional methods for measuring permeability in oil sands, such as laboratory 

experiments and core analyses, are time-consuming and costly, and do not accurately reflect the in-situ 

permeability of the rock. Mean grain size (MGS) can be used as an indirect property to estimate 

permeability, as it contains information about the average pore structure and the ability of fluid to flow 

within the reservoir. In this paper, we proposed a novel method for predicting the facies and mean grain 

size (MGS) of drill core samples using digital images and a combination of VGG-16 and random forest 

(RF) algorithms. Our proposed model showed promising results for accurate estimation of permeability 

using drill core images. However, this research only considered a binary classification problem using a 

small library of rock samples. As a potential extension of this work, future research can consider the 

inclusion of additional facies in the dataset to improve the accuracy and applicability of the model. 

 

Acknowledgements 

 

We would like to express our sincere gratitude to Mitacs and Suncor Energy for providing the financial 

support to this study. Special thanks extend to Suncor Energy for providing the dataset and the 

permission to publish this work. Hamidreza Hamdi would like to thank Rock Flow Dynamics Inc. for 

supporting his independent research. 

 

References 

 

Yoneda, J., Oshima, M., Kida, M., Kato, A., Konno, Y., Jin, Y., ... & Tenma, N. [2019]. Permeability 

variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna–

Godavari Basin, offshore India. Marine and Petroleum Geology, 108, 524-536. 

Wilson, A. M., Huettel, M., & Klein, S. [2008]. Grain size and depositional environment as predictors 

of permeability in coastal marine sands. Estuarine, Coastal and Shelf Science, 80(1), 193-199. 

Tran, T. T., Payenberg, T. H., Jian, F. X., Cole, S., & Barranco, I. [2022]. Deep convolutional neural 

networks for generating grain-size logs from core photographs. AAPG Bulletin, 106(11), 2259-2274. 

Tammina, S. [2019]. Transfer learning using VGG-16 with deep convolutional neural network for 

classifying images. International Journal of Scientific and Research Publications, 9(10), 143-150. 

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. [2015]. ImageNet 

large scale visual recognition challenge. International journal of computer vision, 115(3), 211-252. 

Rahimi, M., & Riahi, M. A. [2022]. Reservoir facies classification based on random forest and 

geostatistics methods in an offshore oilfield. Journal of Applied Geophysics, 201, 104640. 

Wilson, J. D., Bechtel, D. B., Todd, T. C., & Seib, P. A. [2006]. Measurement of wheat starch granule 

size distribution using image analysis and laser diffraction technology. Cereal chemistry, 83(3), 259-

268. 


